[1] Wendland H. Scattered Data Approximation. Cambridge: Cambridge University Press, 2005
[2] Buhmann M D. Radial Basis Functions: Theory and Implementations. Cambridge: Cambridge University Press, 2003
[3] Cucker F, Zhou D X. Learning Theory: An Approximation Theory Viewpoint. Cambridge: Cambridge University Press, 2007
[4] Ball K. Eigenvalues of Euclidean distance matrices. J Approx Theory 1992, 68(1): 74--82
[5] Narcowich F J, Sivakumar N, Ward J D. Stability results for scattered data interpolation on Euclidean spheres. Adv Comput Math, 1998, 8(3): 137--168
[6] Narcowich F J, Sivakumar N, Ward J D. On condition numbers associated with radial function interpolation. J Math Anal and Appl, 1994, 186(3): 457--485
[7] Narcowich F J, Ward J D. Norms estimates for the inverses of a general class of scattered data radial function interpolation matrices. J Approx Theory, 1992, 69(1): 84--109
[8] Jetter K, St\"{o}ckler J, Ward J D. Error estimates for scattered data interpolation on spheres. Math Comp, 1999, 68(226): 733--747
[9] Schaback R. Lower bounds for norms of inverses interpolation matrices for radial basis functions. J Approx Theory, 1994, 79(2): 287--306
[10] Zhou D X. The covering number in learning theory. J Complexity, 2002, 18(3): 739--767
[11] Cucker F, Smale S. On the mathematical foundations of learning. Bull Amer Math Soc, 2001, 39(1): 1--49
[12] 杜娟, 崔明根. 再生核空间中求解带有积分边界条件的半线性热传导方程. 数学物理学报, 2010, 30A(1): 245--257
[13] 周永芳, 崔明根. 一类弱奇异边值问题的大范围收敛算法. 数学物理学报, 2011, 31A(1): 142--153
[14] 吕学琴, 崔明根. 再生核空间中求解线性奇异两点边值问题. 数学物理学报, 2009, 29A(5): 1274--1282
[15] 么焕民, 林迎珍. 八阶奇异边值问题精确解的表达形式. 数学物理学报, 2010, 30A(1): 103--113
[16] Sheng B H, Wang J L, Li P. The covering number for some Mercer kernel Hilbert spaces. J Complexity, 2008, 24(2): 241--258
[17] 盛宝怀.若干周期再生核空间的覆盖数. 数学物理学报, 2009, 29A(6): 1590--1600
[18] Sheng B. Estimates of the norm of the Mercer kernel matrices with discrete orthogonal transforms. Acta Math Hungar, 2009, 122(4): 339--355
[19] Sun H W. Mercer theorem for RKHS on noncompact sets. J Complexity, 2005, 21(3): 337--349
[20] Fang G S. Whittaker-Shannon-Kotelnikov sampling theorem and aliasing error. J Approx Theory, 1996, 85(1): 115--131
[21] Fang G S, Chen X D. Equivalent characterization of entire functions of exponential type. Anal Math, 2000, 26(4): 275--286
[22] Smale S, Zhou D X. Shannon sampling and function reconstruction from point values. Bull Amer Math Soc, 2004, 41(3): 279--305
[23] Frappier C, Olivier P. A quadrature formula involving zeros of Bessel functions. Math Comp, 1993, 60(201): 303--316
[24] Grozev G R, Rahman Q I. A quadrature formula with zeros of Bessel functions as nodes. Math Comp, 1995, 64(210): 715--725
[25] Ghanem R B. Quadrature formula using zeros of Bessel functions as nodes. Math Comp, 1998, 67(221): 323--336
[26] Trim\'{e}che K. Generalized Harmonic Analysis and Wavelet Packets. Singapore: Gordon and Breach Science Publishers, 2001
[27] Chen G G, Fang G S. Discrete characterization on the Paley-Wiener space with several variables. Acta Math Appli Sinica, 2000, 26(4): 396--403
[28] Nikolskii S M. Approximation of Functions of Several Variables and Embedding Theorem. New York: Springer-Verlag, 1975
[29] Watson G N, Sc D F R S. A Treatise on the Theory of Bessel Functions. Cambridge: Cambridge University Press, 1952
[30] Boas R P. Entire Functions. New York: Academic Press, 1954
[31] Grozev G R, Rahman Q I. Lagrange interpolation in the zeros of Bessel functions by entire functions of exponential type and mean convergence. Methods and Applic Anal (MAA), 1996, 3(1): 46--79 |