[1] Aziz-Alaoui M A. Study of Leslie-Gower type tritrophic population model. Chaos Solitons & Fractals, 2002, 8: 1275--1293
[2] Chen L, J\"{u}ngel A. Analysis of a parabolic cross-diffusion population model without self-diffusion. J Differential Equations, 2006, 224: 39--59
[3] Chen W, Wang M. Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion. Math Comput Modelling, 2005, 42: 31--44
[4] Du Y, Hsu S B. Adiffusive predator-prey model in heterogeneous environment. J Differential Equations, 2004, 203: 331--364
[5] Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 2001
[6] Hei L J, Yu Y. Non-constant positive steady state of one resource and two consumers model with diffusion. J Math Anal Appl, 2008, 339: 566--581
[7] Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics. Berlin, New York: Springer-Verlag, 1993
[8] Hu G P, Li X L. Stationary patterns for a Leslie-Gower type three species model with diffusion. Preprint
[9] Ko W, Ryu K. Non-constant positive steady-state of a diffusive predator-prey system in homogeneous environment. J Math Anal Appl, 2007, 327: 539--549
[10] Ko W, Ryu K. Qualitative analysis of a predator-prey model with Holling type II functinal response incorporating a prey refuge. J Differential Equations, 2006, 231: 534--550
[11] Leslie P H, Gower J C. A properties of a stochastic model for the predator-prey type of interaction between two species. Biometrica, 1960, 47: 219--234
[12] Lin L S, Ni W M, Takagi I. Large amplitude stationary solutions to a chemotaxis systems. J Differential Equations, 1988, 72: 1--27
[13] Lou Y, Ni W M. Diffusion, self-diffusion and cross-diffusion. J Differential Equations, 1996, 131: 79--131
[14] Lou Y, Mart\'inez S, Ni W. On 3 \times 3 Lotka-Volterra competition systems with cross-diffusion. Discrete Contin Dyn Syst, 2000, 6: 175--190
[15] Nindjin A F, Aziz-Alaoui M A. Persistence and global stability in a delayed Leslie-Gower type three species food chain. J Math Anal Appl, 2008, 340: 340--357
\REF{[16]}Ni W M, Tang M. Turing patterns in the Lengyel-Epstein system for the CIMA reaction. Trans Amer Math Soc, 2005, 357: 3953--3969
[17] Peng R, Sun F. Turing pattern of the oregonator model. Nonlinear Anal TMA, 2010, 72: 2337--2345
[18] Peng R, Wang M. Positive steady states of the Holling-Tanner prey-predator model with diffusion. Proc Roy Soc Edinburgh, 2005, 135A: 149--164
[19] Peng R, Wang M. Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model. Appl Math Lett, 2007, 20: 664--670
[20] Pang P Y H, Wang M. Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion. Proc Lond Math Soc, 2004, 88: 135--157
[21] Pang P Y H, Wang M. Strategy and stationary pattern in a three-species predator-prey. J Differential Equations, 2004, 200: 245--273
[22] Ruan S. Turing instability and travelling waves in diffusive plankton models with delayed nutrient recycling. IMA J Appl Math, 1998, 61: 15--32
[23] Shi H B, Li W T, Lin G. Positive steady states of a diffusive predator-prey system with modified Holling-Tanner functional sponse. Nonlinear Anal RWA, 2010, 11: 3711--3721
[24] 史红波, 李万同, 林果. 一类修正的Leslie-Gower型扩散捕食系统的定性分析. 数学物理学报, 2011, 31A: 1403--1415
[25] 陈滨, 王明新. 一类三种群捕食模型的正解. 数学物理学报, 2008, 28A: 1256--1266
[26] Wang M X. Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion.
Phys D, 2004, 196: 172--192
[27] Wang M X. Stationary patterns caused by cross-diffusion for a three-species prey-predator model. Comput Math Appl, 2006, 52: 707--720
[28] Zeng X. Non-constant positive steady states of a prey-predator system with cross-diffusions. J Math Anal Appl, 2007, 332: 989--1009 |