数学物理学报 ›› 2013, Vol. 33 ›› Issue (1): 16-27.

• 论文 • 上一篇    下一篇

带有交错扩散的Leslie-Gower型三种群系统的稳态模式

胡广平, 李小玲   

  1. 南京信息工程大学 数学与统计学院 南京 210044
  • 收稿日期:2011-04-20 修回日期:2012-06-01 出版日期:2013-02-25 发布日期:2013-02-25
  • 基金资助:

    国家自然科学基金(11026212)和南京信息工程大学基金(20100364)资助

Stationary Patterns of a Leslie-Gower Type Three Species Model with Cross-Diffusions

 HU Guang-Ping, LI Xiao-Ling   

  1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044
  • Received:2011-04-20 Revised:2012-06-01 Online:2013-02-25 Published:2013-02-25
  • Supported by:

    国家自然科学基金(11026212)和南京信息工程大学基金(20100364)资助

摘要:

讨论了带有Neumann边界条件的一类Leslie-Gower型三种群系统, 在一定的条件之下, 虽然系统对应的扩散(没有交错扩散)系统的唯一正平衡解
是稳定的, 系统中的交错扩散可导致Turing不稳定性的产生. 特别地, 建立了该系统非常数共存解的存在性. 结果表明, 交错扩散可引起系统中出现非常数正稳态解(稳态模式).

关键词: 交错扩散, 捕食系统, 先验估计, 非常数正稳态

Abstract:

This paper is concerned with a Leslie-Gower type three species model subject to the homogeneous Neumann boundary condition. We will show that under certain hypotheses, even though the unique positive equilibrium is asymptotically stable for the dynamics with diffusion, Turing instability can produce due to the presence of the cross-diffusion. In particular, we establish the existence of non-constant positive steady states of this system. The results indicate that cross-diffusion can create  stationary patterns.

Key words: Cross-diffusion, Predator-prey system, Priori estimates, Non-constant positive steady state

中图分类号: 

  • 35J48