数学物理学报 ›› 2012, Vol. 32 ›› Issue (2): 263-270.

• 论文 • 上一篇    下一篇

基于有界度抛物复形的解析函数边值问题

刘飞雷|戴道清   

  1. 中山大学数学系 广州 |510275
  • 收稿日期:2009-11-25 修回日期:2011-12-09 出版日期:2012-04-25 发布日期:2012-04-25
  • 基金资助:

    国家自然科学基金(10771220, 11171354)资助

A Boundary Value Problem of Analytic Function by Finite Degree Parabolic Circle Packing

 LIU Fei-Lei, DAI Dao-Qing   

  1. Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275
  • Received:2009-11-25 Revised:2011-12-09 Online:2012-04-25 Published:2012-04-25
  • Supported by:

    国家自然科学基金(10771220, 11171354)资助

摘要:

该文讨论使用Circle Packing 方法来考虑解析函数边值问题. 寻求满足给定边界条件的解析函数, 是许多理论和实际问题中应用极为广泛的重要问题. 该文使用有界度的Circle Packing来构造给定区域上满足一定边界条件的解析函数, 为此首先讨论了 Circle Packing 映射与经典多项式之间的关系, 并在此基础上证明离散序列对解析函数的收敛性. 这个结果扩展了Carter和Rodin以及Dubejko早期使用正则6-packing取得的结果.

关键词: Packing, 解析函数, 边值问题, 离散多项式, 抛物复形

Abstract:

We will discuss the relationship between finite degree circle packing mapping and the classical analytic function. We use finite degree parabolic circle packing to simulate polynomials and construct approximating sequence to the analytic function with given boundary condition and branch set. This extends earlier results of Carter and Rodin and of Dubejko on regular hexgonal circle packings.

Key words: Circle packing, Analytic function, Parabolic complex, Boundary value problem

中图分类号: 

  • 52C26