[1] 袁益让. 油藏数值模拟中动边值问题的特征差分方法. 中国科学, 1994, 12A: 1442--1453
[2] Douglas J Jr, Roberts J E. Numerical method for a model for compressible miscible displacement in porous media. Math Comp, 1983, 41(164): 441--459
[3] 袁益让. 多孔介质中可压缩、可混溶驱动问题的特征有限元方法. 计算数学, 1992, 14(4): 385--406
[4] 袁益让. 在多孔介质中完全可压缩、可混溶驱动问题的差分方法. 计算数学, 1993, 15(1): 16--28
[5] Ewing R E. The Mathematics of Reservoir Simulation. Philadephia: SIAM, 1983
[6] Marchuk G I. Splitting and Alternating Direction Method//Ciarlet P G, Lions J L, eds. Handbook of Numerical Analysis. Paris: Elsevior Science Publishers BV, 1990: 197--460
[7] Douglas J Jr, Russell T F. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J Numer Anal, 1982, 19(5): 781--895
[8] Douglas J Jr. Simulaton of Miscible Displacement in Porous Media by a Modified Method of Characteristic Procedure. Lecture Notes in Mathematics 912. Berlin, Heidelberg: Springer, 1982
[9] Douglas J Jr. Finite difference methods for two-phase incompressible flow in porous media. SIAM J Numer Anal, 1983, 20(4): 681--696
[10] Ewing R E, Russell T F, Wheeler M F. Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comp Meth Appl Mech Eng, 1984, 47(1/2): 73--92
[11] Bermudez A, Nogueiras M R, Vazquez C. Numerical analysis of convection-diffusion-reaction problems with higher order characteristics/finite elements, Part I: time diseretization. SIAM J Numer Anal, 2006, 44(5): 1829--1853
[12] Bermudez A, Nogueriras M R, Vazquez C. Numerical analysis of convection-diffusion-reaction problems with higher order characteristics/finite elements, Part II: fully diseretized scheme and quadratare fomulas. SIAM J Numer Anal, 2006, 44(5): 1854--1876
[13] 袁益让. 三维动边值问题的特征混合元方法和分析. 中国科学, 1996, 39(A)}(3): 276--288
[14] 袁益让. 三维热传导型半导体问题的差分方法和分析. 中国科学, 1996, 39(A)}11: 1140--1151
[15] Axelsson O, Gustafasson I. A modified upwind scheme for convective transport equations and the use of a conjugate gradient method for the solution of non-symmetric systems of equations. J Inst Maths Applics, 1979, 23: 321--337
[16] Ewing R E, Lazarov R D, Vassilevski A T. Finite difference shceme for parabolic problems on composite grids with refinement in time
and space. SIAM J Numer Anal, 1994, 31(6): 1605--1622
[17] Lazarov R D, Mishev I D, Vassilevski P S. Finite volume method for convection-diffusion problems. SIAM J Numer Anal, 1996, 33(1): 31--55
[18] Peaceman D W. Fundamantal of Numerical Reservoir Simulation. Amsterdam: Elsevier, 1980
[19] Douglas J Jr, Gunn J E. Two order correct difference analogues for the equation of multidimensional heat flow. Math Comp, 1963, 17(81): 71 --80
[20] Douglas J Jr, Gunn J E. A general formulation of alternating direction methods, Part 1: Parabolic and hyperbolic problems.
Numer Math, 1964, 6(5): 428--453
[21] Ewing R E. Mathematical Modeling and Simulation for Multiphase Flow in Porous Media, in Numerical Treatment of Multiphase Flows in Porous Media. Lecture Notes in Physics, 1552. New York: Springer, 2000: 19--29
[22] Yuan Yirang, Han Yuji. Numerical simulation of migration-accumulation of oil resources. Comput Geosi, 2008, 12: 153--162
[23] 袁益让, 韩玉笈. 三维油资源渗流力学运移聚集的大规模数值模拟和应用. 中国科学, 2008, 51(G)}(8): 1114--1163
[24] Yuan Yirang, Wang Wenqia, Han Yuji. Theory, method and applicaiton of a numerical simulation oil resources basin methods of numerical solutions of aexodynamic problems. Special Topic & Reviews in Porous Media, 2010, 1(1): 49--66
[25] Yuan Yirang. The upwind finite difference method for compressible two-phase displacement problem. Acta Mathematicae Applicatae Sinica, 2002, 25(3): 484--496
[26] Samarskii A A. Introduction to the Theory of Difference Schemes. Moscow: Nauka, 1971[Russian]
[27] Samarskii A A, Andreev B B. Finite Difference Methods for Elliptic Equation (In Chinese). Beijing: Science Press, 1984
[28] Marchuk G I. Method of Numerical Mathematics. New York: Springer-Verlag, 1982
[29] 袁益让. 可压缩两相驱动问题的迎风差分格式及其理论分析. 应用数学学报, 2002, 25(3): 484--496 |