[1] Duffin R J, Schaeffer A C. A class of nonharmonic Fourier series. Transactions of the American Mathematical Society, 1952, 72(2): 341--366
[2] Wiley R G. Recovery of band-limited signals from unequally spaced samples. IEEE Transactions on Communications, 1978, 26: 135--137
[3] Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 1990, 36(5): 961--1005
[4] Daubechies I, Grossman A. Frames in the Bargmann space of entire functions. Communications on Pure and Applied Mathematics, 1988, 41(2): 151--164
[5] Daubechies I, Grossman A, Meyer Y. Painless nonorthogonal expansions. Journal of Mathematical Physics, 1986, 27(5): 1271--1283
[6] Mallat S, Zhong S. Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(7): 710--732
[7] Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage. Biometrika, 1994, 81(3): 425--455
[8] Candes E J. Harmonic analysis of neural networks. Applied and Computational Harmonic Analysis, 1999, 6(2): 197--218
[9] Donoho D L. Orthonormal ridgelet and straight singularities. SIAM Journal on Mathematical Analysis, 2000, 31(5): 1062--1099
[10] Candes E J. Monoscale Ridgelet for the Representation of Images with Edges. California: Stanford University, 1999: 1--26
[11] Candes E J, Donoho D L. Curvelets-a Surprisingly Effective Nonadaptive Representation for Objects with Edges//Schumaker L L ed. Saint-Malo Proceedings. Nashville: Vanderbilt University Press, 1999: 1--10
[12] Flesia A G, Hel-Or H, Averbuch A, et al. Digital Implementation of Ridgelet Packets//Stoeckler J, Welland G V ed. Beyond Wavelets. New York: Academic Press, 2001: 1--34
[13] Tan S, Jiao L C. Ridgelet bi-frame. Applied and Computational Harmonic Analysis, 2006, 20(3): 391--402
[14] Tan S, Zhang X R, Jiao L C. Dual Ridgelet Frame Constructed Using Biorthonormal Wavelet Basis. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Philadelphia: PA, 2005: 997--1000
[15] Bai J, Feng X C. Digital ridgelet reconstruction based on local dual frame. Science in China, 2005, 48(6): 782--794
[16] Candes E J, Donoho D L. New tight frames of curvelets and optimal representations of objects with piecewise singularities.
Communications on Pure and Applied Mathematics, 2004, 57(2): 219--266
[17] 黄永东, 程正兴. α带小波紧框架的显式构造方法. 数学物理学报, 2007, 27(1): 7--18
[18] 肖雪梅, 朱玉灿. Banach空间中框架的对偶原理. 数学物理学报, 2009, 29(1): 94--102
[19] Borup L, Nielsen M. Frame decomposition of decomposition spaces. Journal of Fourier Analysis and Applications, 2007, 13(1): 39--70
[20] Triebel H. Theory of Function Spaces. Monographs in Mathematics 78. Basel: Birkhauser Verlag, 1983 |