数学物理学报 ›› 2010, Vol. 30 ›› Issue (6): 1686-1692.

• 论文 • 上一篇    下一篇

自伴算子空间上满足[Φ(A2), Φ(A)] = 0的可加满射

齐霄霏1,2|杜拴平2,4|侯晋川1,3   

  1. 1.山西大学数学学院 太原 030006|2.山西师范大学数计学院 山西临汾 041004|3.太原理工大学数学系 太原 030024; 4.厦门大学数学学院 福建厦门 361005
  • 收稿日期:2008-10-08 修回日期:2009-12-06 出版日期:2010-12-25 发布日期:2010-12-25
  • 基金资助:

    国家自然科学基金(10771157)、山西省自然科学基金(2006021008, 2007011016)和山西省回国留学人员研究基金(2007-38)资助

Additive Maps Satisfying [Φ(A2), Φ(A)] = 0 on the Space of Self-adjoint Operators

 QI Xiao-Fei1,2, DU Quan-Ping2,4, HOU Jin-Chuan1,3   

  1. 1.Department of Mathematics, Shanxi University, Taiyuan 030006|2.Department of Mathematics, Shanxi Normal University, Shanxi Linfen 041004|3.Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024|4.Department of Mathematics, Xiamen University, Fujian Xiamen 361005
  • Received:2008-10-08 Revised:2009-12-06 Online:2010-12-25 Published:2010-12-25
  • Supported by:

    国家自然科学基金(10771157)、山西省自然科学基金(2006021008, 2007011016)和山西省回国留学人员研究基金(2007-38)资助

摘要:

H为维数大于2的复 Hilbert 空间,  B}_{s}(H)H线.{\mathcal B}_{s}(H)[\Phi(A^2),\Phi(A)]=0A\in {\mathcal B}_s(H)\Phi,\Phi({\mathcal F}_{s}(H)) \not\subseteq{\mathbb R}I{\mathbb R}I\subseteq\Phi({\mathbb R}I)\Phi\Phi(A)=cUAU^*+f(A)I,\ \forall  A \in {\mathcal B}_{s}(H),c\in {\Bbb R}, c\neq 0,U:H\rightarrow H,f{\mathcal B}_{s}(H)$上的可加泛函.

关键词: 可加映射, 交换性, Jordan同态, 自伴算子空间

Abstract:

Let H be a complex Hilbert space with dimension greater than 2 and Bs(H) the space of all self-adjoint operators in B(H). A characterization is given for additive bijective map Φ on Bs(H) satisfying [Φ(A2),Φ(A)]=0 for all ABs(H). It is showed that, if Φ(Fs(H))RI or  RIΦ(RI), then Φ has the form Φ(A)=cUAU+f(A)I, ABs(H), where cR, c0, U:HH is an unitary or conjugate unitary operator, and f is an additive real functional of Bs(H).

Key words: Additive maps, Commutativity, Jordan homomorphism, Space of self-adjoint operators

中图分类号: 

  • 47B49