[1] Krstulovic G, Brachet M. Two-fluid model of the truncated Euler equations. Physica D, online (2008)
[2] Kozono H, Ogawa T, Taniuchi Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some
semilinear evolution equations. Math Z, 2002, 242: 251--278
[3] Beirão da Veiga H. A new regularity class for the Navier-Stokes equations in Rn. Chinese Ann Math, 1995, 16B: 407--412
[4] Escauriaza L, Seregin G A, Šverák V. L3,∞ -solutions of the Navier-Stokes equations and backward uniqueness. Russian Math Surveys, 2003, 58(2): 211--248
[5] Ohyama T. Interior regularity of weak solutions to the Navier-Stokes equations. Proc Japan Acad, 1960, 36: 273--277
[6] Serrin J. On the interior regularity of weak solutions of the Navier-Stokes equations. Arch Ration Mech Anal, 1962, 9: 187--195
[7] Zhou Y. On regularity criteria in terms of pressure for the Navier-Stokes equations in R3. Proc Amer Math Soc, 2005, 134: 149--156
[8] Zhou Y. On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in RN. Z Angew Math Phys, 2006, 57: 384--392
[9] Zhou Y. A new regularity criterion for weak solutions to the Navier-Stokes equations. J Math Pures Appl, 2005, 84(11): 1496--1514
[10] Zhou Y. A new regularity criterion for the Navier-Stokes equations in terms of the direction of vorticity. Monatsh Math,
2005, 144(3): 251--257
[11] Zhou Y. Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain. Math Ann, 2004, 328(1/2): 173--192
[12] Miao C X. Harmonic Analysis and its Applications in PDE. Beijing: Science Press, 2004
[13] Machihara S, Ozawa T. Interpolation inequalities in Besov spaces. Proc AMS, 2002, 131(5): 1553--1556
[14] Temam R. Navier-Stokes Equations and Nonlinear Functional Analysis. Philadelphia: SIAM, 1983
[15] Kato T, Ponce G. Commutator estimates and the Euler and Navier-Stokes equations. Comm Pure Appl Math, 1988, 41: 891--907
[16] Kenig C, Ponce G, Vega L. Well-posedness of the intial value problem for the Korteweg-de Vries equations. J Amer Math Soc, 1991, 4: 323--347 |