数学物理学报 ›› 2010, Vol. 30 ›› Issue (6): 1686-1692.

• 论文 • 上一篇    下一篇

自伴算子空间上满足[Φ(A2), Φ(A)] = 0的可加满射

齐霄霏1,2|杜拴平2,4|侯晋川1,3   

  1. 1.山西大学数学学院 太原 030006|2.山西师范大学数计学院 山西临汾 041004|3.太原理工大学数学系 太原 030024; 4.厦门大学数学学院 福建厦门 361005
  • 收稿日期:2008-10-08 修回日期:2009-12-06 出版日期:2010-12-25 发布日期:2010-12-25
  • 基金资助:

    国家自然科学基金(10771157)、山西省自然科学基金(2006021008, 2007011016)和山西省回国留学人员研究基金(2007-38)资助

Additive Maps Satisfying [Φ(A2), Φ(A)] = 0 on the Space of Self-adjoint Operators

 QI Xiao-Fei1,2, DU Quan-Ping2,4, HOU Jin-Chuan1,3   

  1. 1.Department of Mathematics, Shanxi University, Taiyuan 030006|2.Department of Mathematics, Shanxi Normal University, Shanxi Linfen 041004|3.Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024|4.Department of Mathematics, Xiamen University, Fujian Xiamen 361005
  • Received:2008-10-08 Revised:2009-12-06 Online:2010-12-25 Published:2010-12-25
  • Supported by:

    国家自然科学基金(10771157)、山西省自然科学基金(2006021008, 2007011016)和山西省回国留学人员研究基金(2007-38)资助

摘要:

H为维数大于2的复 Hilbert 空间,  B}_{s}(H)$为$H$上所有有界自伴算子构成的实线性空间.该文给出${\mathcal B}_{s}(H)$上满足$[\Phi(A^2),\Phi(A)]=0$ 对所有$A\in {\mathcal B}_s(H)$成立的可加双射$\Phi$的刻画,在$\Phi({\mathcal F}_{s}(H)) \not\subseteq{\mathbb R}I$或${\mathbb R}I\subseteq\Phi({\mathbb R}I)$的条件下证明了上述$\Phi$具有形式 $\Phi(A)=cUAU^*+f(A)I,\ \forall  A \in {\mathcal B}_{s}(H),$ 其中 $c\in {\Bbb R}, c\neq 0$, $U:H\rightarrow H$是酉算子或共轭酉算子, 而$f$是${\mathcal B}_{s}(H)$上的可加泛函.

关键词: 可加映射, 交换性, Jordan同态, 自伴算子空间

Abstract:

Let $H$ be a complex Hilbert space with dimension greater than 2 and ${\mathcal B}_{s}(H)$ the space of all self-adjoint operators in ${\mathcal B}(H)$. A characterization is given for additive bijective map $\Phi$ on ${\mathcal B}_{s}(H)$ satisfying $[\Phi(A^2),\Phi(A)]=0$ for all $A\in {\mathcal B}_s(H)$. It is showed that, if $\Phi({\mathcal F}_{s}(H)) \not\subseteq {\mathbb R}I$ or  ${\mathbb R}I\subseteq\Phi({\mathbb R}I)$, then $\Phi$ has the form $\Phi(A)=cUAU^*+f(A)I, ~ \forall  A \in {\mathcal B}_{s}(H),$ where $c\in {\mathbb R},$ $c\neq 0$, $U:H\rightarrow H$ is an unitary or conjugate unitary operator, and $f$ is an additive real functional of ${\mathcal B}_{s}(H)$.

Key words: Additive maps, Commutativity, Jordan homomorphism, Space of self-adjoint operators

中图分类号: 

  • 47B49