[1] |
Qi H K, Meng X Z. Dynamics of a stochastic predator-prey model with fear effect and hunting cooperation. J Appl Math Comput, 2023, 69(4): 2077-2103
doi: 10.1007/s12190-022-01746-7
|
[2] |
Gokila C, Sambath M, Balachandran K, Ma Y K. Stationary distribution and global stability of stochastic predator-prey model with disease in prey population. J Biol Dyn, 2023, 17(1): 1-30
|
[3] |
Gao J, Zhang J, Lian W. Dynamical complexity of a predator-prey model with a prey refuge and Allee effect. Turk J Math, 2023, 47(7): 2061-2085
|
[4] |
Liu M, Mandal P S. Dynamical behavior of a one-prey two-predator model with random perturbations. Commun Nonl Sci Numer Simulat, 2015, 28(1/3): 123-137
|
[5] |
Kumar C P, Reddy K S, Srinivas M. Dynamics of prey predator with Holling interactions and stochastic influences. Alex Eng J, 2018, 57(2): 1079-1086
|
[6] |
Holling C S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem Ent Soc Can, 1965, 97(45): 1-60
|
[7] |
陈兰荪, 宋新宇, 陆征一. 数学生态学模型与研究方法. 成都: 四川科学技术出版社, 2003
|
|
Chen L S, Song X Y, Lu Z Y. Mathematical Ecology Models and Research Methods. Chengdu: Sichuan Sci Technol Press, 2003
|
[8] |
Beroual N, Bendjeddou A. On a predator-prey system with Holling functional response: $x^p/(a + x^p)$. Natl Acad Sci Lett, 2016, 39(1): 43-46
|
[9] |
Wang X Y, Zanette L, Zou X F. Modelling the fear effect in predator-prey interactions. J Math Biol, 2016, 73(5): 1179-1204
pmid: 27002514
|
[10] |
Mondal S, Maiti A, Samanta G P. Effects of fear and additional food in a delayed predator-prey model. Biophys Rev Lett, 2018, 13(4): 157-177
|
[11] |
Pal S, Majhi S, Mandal S, Pal N. Role of fear in a predator-prey model with Beddington-DeAngelis functional response. Z Naturforsch A, 2019, 74(7): 581-595
|
[12] |
Wang Q F, Zhang S W. Dynamics of a stochastic delay predator-prey model with fear effect and diffusion for prey. J Math Anal Appl, 2024, 537(2): 128267
|
[13] |
蓝桂杰, 付盈洁, 魏春金, 张树文. 具有 Holling III 功能性反应的随机捕食食饵模型的平稳分布和周期解. 数学物理学报, 2018, 38A(5): 984-1000
|
|
Lan G J, Fu Y J, Wei C J, Zhang S W. Stationary distribution and periodic solution for stochastic predator-prey model with Holling-type III functional response. Acta Math Sci, 2018, 38A(5): 984-1000
|
[14] |
张树文. 具有时滞和扩散的随机捕食-食饵系统. 数学物理学报, 2015, 35A(3): 592-603
|
|
Zhang S W. A stochastic predator-prey system with time delay and prey dispersal. Acta Math Sci, 2015, 35A(3): 592-603
|
[15] |
千美华, 崔莹, 李晓月. 随机环境下 Holling III 型捕食-食饵系统动力学行为. 东北师大学报 (自然科学版), 2023, 55(1): 40-44
|
|
Qian M H, Cui Y, Li X Y. Dynamics behavior of the Holling III type predator-prey model in a random environment. J Northeast Norm Univ (Nat Sci Ed), 2023, 55(1): 40-44
|
[16] |
王克. 随机生物数学模型. 北京: 科学出版社, 2010
|
|
Wang K. Random Biological Mathematical Model. Beijing: Science Press, 2010
|
[17] |
Mandal P S, Banerjee M. Stochastic persistence and stationary distribution in a Holling-Tanner type prey-predator model. Physica A, 2012, 391(4): 1216-1233
|