数学物理学报 ›› 2024, Vol. 44 ›› Issue (5): 1368-1379.

• • 上一篇    下一篇

一类具有 Ornstein-Uhlenbeck 过程的随机捕食者-食饵模型的指数绝灭、平稳分布和概率密度函数

张雯雯,刘志军*(),王清龙   

  1. 湖北民族大学数学与统计学院 湖北恩施 445000
  • 收稿日期:2023-10-30 修回日期:2024-04-15 出版日期:2024-10-26 发布日期:2024-10-16
  • 通讯作者: *刘志军, E-mail: zjliu@hbmzu.edu.cn
  • 基金资助:
    国家自然科学基金(12101211);湖北省自然科学基金(2023AFB1095)

Exponential Extinction, Stationary Distribution and Probability Density Function of A Stochastic Predator-Prey Model with Ornstein-Uhlenbeck Process

Zhang Wenwen,Liu Zhijun*(),Wang Qinglong   

  1. School of Mathematics and Statistics, Hubei Minzu University, Hubei Enshi 445000
  • Received:2023-10-30 Revised:2024-04-15 Online:2024-10-26 Published:2024-10-16
  • Supported by:
    National Natural Science Foundation of China(12101211);Natural Science Foundation of Hubei Province of China(2023AFB1095)

摘要:

该文建立了一类具有 Ornstein-Uhlenbeck 过程、恐惧效应、Crowley-Martin 型和修正的 Leslie-Gower 型功能反应函数的捕食者-食饵模型. 首先通过构造合适的 Lyapunov 函数证明了全局解的存在唯一性, 随后获得了两物种指数绝灭和平稳分布存在的充分条件. 进一步通过求解相应的 Fokker-Planck 方程得到了概率密度函数的具体表达式. 最后通过三个数值例子验证了理论结果的可行性, 其研究表明随机干扰的波动强度和回复速率均会影响种群的生存.

关键词: 捕食者-食饵模型, Ornstein-Uhlenbeck 过程, 指数绝灭, 平稳分布, 概率密度函数

Abstract:

In the paper, a stochastic predator-prey model with Ornstein-Uhlenbeck process, fear effect, Crowley-Martin type and Leslie-Gower type functional responses is considered. Firstly, by constructing suitable Lyapunov functions, we prove that the existence and uniqueness of the global solution, and the sufficient conditions for the exponential extinction and the existence of stationary distribution are obtained. Secondly, we get access to the specific expression of probability density function via dealing with the corresponding Fokker-Planck equation. Finally, our theoretical results are verified by three numerical examples. The results show that the intensity of volatility and the reversion speed of stochastic disturbance will affect the survival of species.

Key words: Predator-Prey model, Ornstein-Uhlenbeck process, Exponential extinction, Stationary distribution, Probability density function

中图分类号: 

  • O175