[1] |
马知恩. 种群生态学的数学建模与研究. 合肥: 安徽教育出版社, 1996
|
|
Ma Z E. Mathematical Modeling and Research of Population Ecology. Hefei: Anhui Education Press, 1996
|
[2] |
Su W, Zhang X. Global stability and canard explosions of the predator-prey model with the sigmoid functional response. SIAM J Appl Math, 2022, 82(3): 976-1000
doi: 10.1137/21M1437755
|
[3] |
Santra P K, Mahapatra G S, Phaijoo G R. Bifurcation and chaos of a discrete predator-prey model with Crowley-Martin functional response incorporating proportional prey refuge. Math Probl Eng, 2020, 2020: 1-18
|
[4] |
Zhou Y, Sun W, Song Y F, et al. Hopf bifurcation analysis of a predator-prey model with Holling-II type functional response and a prey refuge. Nonlinear Dyn, 2019, 97: 1439-1450
|
[5] |
Sarkar K, Khajanchi S. Impact of fear effect on the growth of prey in a predator-prey interaction model. Ecol Complex, 2020, 42: 100826
|
[6] |
Liu Y Y, Cao Q, Yang W S. Influence of Allee effect and delay on dynamical behaviors of a predator-prey system. Comput Appl Math, 2022, 41(8): 396
|
[7] |
Mishra S, Upadhyay R K. Spatial pattern formation and delay induced destabilization in predator-prey model with fear effect. Math Method Appl Sci, 2022, 11: 45
|
[8] |
May R M. Stability and Complexity in Model Ecosystems. New Jersey: Princeton University Press, 2001
|
[9] |
Chen X Z, Tian B D, Xu X, et al. A stochastic predator-prey system with modified LG-Holling type II functional response. Math Comput Simul, 2023, 203: 449-485
|
[10] |
Tian B D, Yang L, Chen X Z, et al. A generalized stochastic competitive system with Ornstein-Uhlenbeck process. Int J Biomath, 2021, 14(1): 2150001
|
[11] |
Zhang X H, Yang Q, Jiang D Q. A stochastic predator-prey model with Ornstein-Uhlenbeck process: Characterization of stationary distribution, extinction and probability density function. Commun Nonlinear Sci Numer Simul, 2023, 122: 107259
|
[12] |
Mu X J, Jiang D Q, Hayat T, et al. A stochastic turbidostat model with Ornstein-Uhlenbeck process: Dynamics analysis and numerical simulations. Nonlinear Dyn, 2022, 107(3): 2805-2817
|
[13] |
Zhou B Q, Jiang D Q, Hayat T. Analysis of a stochastic population model with mean-reverting Ornstein-Uhlenbeck process and Allee effects. Commun Nonlinear Sci Numer Simul, 2022, 111: 106450
|
[14] |
Yang Q, Zhang X H, Jiang D Q. Dynamical behaviors of a stochastic food chain system with Ornstein-Uhlenbeck process. J Nonlinear Sci, 2022, 32(3): 34
|
[15] |
Shi Z F, Jiang D Q. Environmental variability in a stochastic HIV infection model. Commun Nonlinear Sci Numer Simul, 2023, 120: 107201
|
[16] |
Zuo W J, Jiang D Q. Stationary distribution and periodic solution for stochastic predator-prey systems with nonlinear predator harvesting. Commun Nonlinear Sci Numer Simul, 2016, 36: 65-80
|
[17] |
Allen E. Environmental variability and mean-reverting processes. Discrete Contin Dyn Syst Ser B, 2016, 21(7): 2073-2089
|
[18] |
Kutoyants Y A. Statistical Inference for Ergodic Diffusion Processes. London: Springer, 2003
|
[19] |
Khasminskii R. Stochastic Stability of Differential Equations. New York: Springer Science Business Media, 2011
|
[20] |
Gardiner C W. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Berlin: Springer, 1985
|
[21] |
Oksendal B. Stochastic Differential Equations:An Introduction with Applications. New York: Springer-Verlag Heidelberg, 2000
|
[22] |
Ma Z E, Zhou Y C, Li C Z. Qualitative and Stability Methods for Ordinary Differential Equations. Beijing: Science Press, 2015
|
[23] |
何晓群. 多元统计分析. 北京: 中国人民大学出版社, 2019
|
|
He X Q. Multivariate Statistical Analysis. Beijing: China Renmin University Press, 2019
|