数学物理学报 ›› 2024, Vol. 44 ›› Issue (4): 885-895.

• • 上一篇    下一篇

耦合Aw-Rascle-Zhang模型的Riemann解及其稳定性

潘丽君*(),吕顺(),翁莎莎()   

  1. 南京航空航天大学数学学院 南京 211106;航空飞行器数学建模与高性能计算重点实验室 南京 211106
  • 收稿日期:2023-05-30 修回日期:2024-01-25 出版日期:2024-08-26 发布日期:2024-07-26
  • 通讯作者: *潘丽君, E-mail:98010149@163.com
  • 作者简介:吕顺, E-mail:shun0419@nuaa.edu.cn;|翁莎莎, E-mail:wengshasha@nuaa.edu.cn
  • 基金资助:
    中国留学基金(201506835005)

Riemann Solution and Stability of Coupled Aw-Rascle-Zhang Model

Pan Lijun*(),Lv Shun(),Weng Shasha()   

  1. School of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106; Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles (NUAA), MIIT, Nanjing 211106
  • Received:2023-05-30 Revised:2024-01-25 Online:2024-08-26 Published:2024-07-26
  • Supported by:
    China Scholarship Fund(201506835005)

摘要:

该文主要研究在单连通道路上具有不同压力项的耦合 Aw-Rascle-Zhang(CARZ) 交通流模型的黎曼问题, 利用特征分析法和相变的相关理论, 构造了文献 [5]缺失的情形 $ v_- + \eta (\rho_-)^{\gamma} = v_+ $ 的稳定显式解, 并修正了情形 $ v_+ + \eta(\rho_-)^{\gamma} < v_+ $ 的黎曼解, 完善了 Herty[5] 等人的工作. 当 CARZ 模型中压力项前面的参数 $ \mu \to \eta $ 时, 证明了该模型黎曼解的唯一性和稳定性.

关键词: 耦合 Aw-Rascle-Zhang 交通流模型, 黎曼问题, 唯一性, 稳定性

Abstract:

This paper studies the Riemann problem of the coupled Aw-Rascle-Zhang traffic model with different pressure laws on the connected roads. Using the method of characteristic analysis and theories of phase transition, we construct the Riemann solution to the coupled Aw-Rascle-Zhang model for the ommitted case $ v_- + \eta (\rho_-)^{\gamma} = v_+ $ in reference [5], and correct Riemann solution for the case $ v_+ + \eta(\rho_-)^{\gamma} < v_+ $, which complete the work of Herty, et al. Furthermore, when the parameter of the pressure term $ \mu \to \eta $, the uniqueness and stability of the Riemann solution of the coupled Aw-Rascle model are proved.

Key words: Coupled Aw-Rascle-Zhang model, Riemann problem, Uniqueness, Stability

中图分类号: 

  • O175.27