[1] |
Hardy G H. Note on a theorem of Hilbert concerning series of positive terms. Proceedings of the London Mathematical Society, 1925, 23: 45-48
|
[2] |
Wey H. Singulare Integral Gleichungen min Besonderer Berucksichtigung des Fourierschen Integral Theorems. Gottingen: Inaugeral-Dissertation, 1908
|
[3] |
洪勇. 带对称齐次核的级数算子的范数刻画及其应用. 数学学报(中文版), 2008, 51(2): 365-370
|
|
Hong Y. On the norm of a series operator with a symmetric and homogeneous kernel and its application. Acta Mathematica Sinca (Chinese Series), 2008, 51(2): 365-370
|
[4] |
Kuang J C. On new extension of Hilbert's integral inequality. J Math Anal Appl, 1999, 235: 608-614
|
[5] |
Rassias M TH, Yang B C, Raigorodskii A. Equivalent properties of two kinds of Hardy-Type integral inequalities. Symmetry, 2021, 13: Article 1006
|
[6] |
Wang A Z, Yang B C, Chen Q. Equivalent properties of a reverse half-discrete Hilbert's inequality. J Inequal Appl, 2019, 279: 1-12
|
[7] |
洪勇, 温雅敏. 齐次核的 Hilbert 型级数不等式取最佳常数因子的充要条件. 数学年刊, 2016, 37A(3): 329-336
|
|
Hong Y, Wen Y M. A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor. Chinese Annals of Mathematics, 2016, 37A(3): 329-336
|
[8] |
Salem S R. Some new Hilbert type inequalities. Kyungpook Math J, 2006, 46: 19-29
|
[9] |
Hong Y, Huang Q L, Yang B C. The necessary and sufficient conditions for the existence of a kind of Hilbert-type multiple integral inequality with the non-homogeneous kernel and its applications. Journal of Inequalities and Applications, 2017: Article 316
|
[10] |
洪勇. 具有齐次核的 Hilbert 型积分不等式的构造特征及应用. 吉林大学学报(理学版), 2017, 55(2): 189-194
|
|
Hong Y. Structural charateristics and applications of Hilbert's type integral inequalities with homogeneous kernel. Journal of Jilin University (Science Edition), 2017, 55(2): 189-194
|
[11] |
Xu J S. Hardy-Hilbert's inequalities with two parameters. Advances in Mathematics China, 2007, 36(2): 189-202
|
[12] |
洪勇, 吴春阳, 陈强. 一类非齐次核的最佳 Hilbert 型积分不等式的最佳搭配参数条件. 吉林大学学报(理学版), 2021, 59(2): 207-212
|
|
Hong Y, Wu C Y, Chen Q. Matching parameter conditions for the best Hilbert-type integral inequality with a class of non-homogeneous kernels. Journal of Jilin Universit (Science Edition), 2021, 59(2): 207-212
|
[13] |
He B, Hong Y, Li Z H. Conditions for the validity of a class of optimal Hilbert type multiple integral inequalities with nonhomogeneous kernels. Journal of Inequalities and Applications, 2021, 2021: Article 64
|
[14] |
洪勇, 陈强. 广义齐次核重积分算子最佳搭配参数的等价条件及应用. 中国科学(数学), 2023, 53(5): 717-728
|
|
Hong Y, Chen Q. Equivalence condition for the best matching parameters of multiple integral operator with generalized homogeneous kernel and applications (in Chinese) Sci Sin Math, 2023, 53: 717-728
|
[15] |
Yang B C. On Hilbert's integral inequality. J Math Anal Appl, 1998, 220: 778-785
|
[16] |
Rassias M TH, Yang B C, Raigorodskii A. On a more accurate reverse Hilbert-type inequality in the whole plane. J Math Inequal, 2020, 14(4): 1359-1374
|
[17] |
洪勇, 陈强. 拟齐次核的 Hilbert 型级数不等式的最佳搭配参数条件及应用. 数学物理学报, 2022, 42A(1): 26-34
|
|
Hong Y, Chen Q. The best matching parameters conditions of Hilbert-type series inequality with quasi-homogeneous kernel and applications. Acta Mathematica Scientia, 2022, 42A(1): 26-34
|
[18] |
洪勇, 和炳. Hilbert 型不等式的理论与应用. 北京: 科学出版社, 2023
|
|
Hong Y, He B. Theory and Applications of Hilbert-Type Intequalities. Beijing: Science Press, 2023
|