数学物理学报 ›› 2024, Vol. 44 ›› Issue (4): 1037-1051.
收稿日期:
2023-07-07
修回日期:
2024-02-25
出版日期:
2024-08-26
发布日期:
2024-07-26
通讯作者:
*赵文玲, E-mail: 基金资助:
Wang Ruyu,Zhao Wenling*(),Song Daojin
Received:
2023-07-07
Revised:
2024-02-25
Online:
2024-08-26
Published:
2024-07-26
Supported by:
摘要:
为了在更弱的条件下, 给出最优化问题 (OP) 与变分不等式问题 (VIP) 的可行解序列的有限终止性, 在这类问题的解集上引进了一个增广映射, 分别建立了解集关于可行解序列广义弱尖锐性的概念. 这个新概念是传统的弱尖锐性与强非退化概念的扩充与推广, 其克服了最优化与变分不等式在许多情况下解集不具有弱尖锐性或强非退化性的缺陷. 在这些问题的解集满足广义弱尖锐性的条件下, 提供其可行解序列有限终止于解集的充分与必要条件. 这些结果是现有相关文献中在弱尖锐或强非退化条件下相应结果的推广, 同时也为许多最优化算法的有限终止性提供了更弱的充分条件.
中图分类号:
王茹钰, 赵文玲, 宋道金. 最优化与变分不等式的可行解序列的有限终止性[J]. 数学物理学报, 2024, 44(4): 1037-1051.
Wang Ruyu, Zhao Wenling, Song Daojin. The Finite Termination of Feasible Solution Sequence for Optimization and Variational Inequality[J]. Acta mathematica scientia,Series A, 2024, 44(4): 1037-1051.
[1] | Rockafellar R T, Wets R J B. Variational Analysis. New York: Springer Science & Business Media, 2009 |
[2] | Rockafellar R T. Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 1976, 14(5): 877-898 |
[3] | Polyak B T. Introduction to Optimization. New York: Optimization Software, 1987: 1-32 |
[4] | Ferris M C. Weak Sharp Minima and Penalty Functions in Mathematical Programming. Cambridge: University of Cambridge, 1988 |
[5] | Ansari Q H, Babu F, Yao J C. Regularization of proximal point algorithms in Hadamard manifolds. Journal of Fixed Point Theory and Applications, 2019, 21: 1-23 |
[6] | Dinis B, Pinto P. Metastability of the proximal point algorithm with multi-parameters. Portugaliae Mathematica, 2020, 77(3): 345-381 |
[7] | Ferris M C. Finite termination of the proximal point algorithm. Mathematical Programming, 1991, 50: 359-366 |
[8] | Kim J L, Toulis P, Kyrillidis A. Convergence and stability of the stochastic proximal point algorithm with momentum. Proc Machine Learn Res, 2022, 168: 1034-1047 |
[9] | Matsushita S, Xu L. Finite termination of the proximal point algorithm in Banach spaces. Journal of Mathematical Analysis and Applications, 2012, 387(2): 765-769 |
[10] | Mokhtari A, Ozdaglar A, Pattathil S. A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: Proximal point approach. Proc Machine Learn Res, 2020, 108: 1497-1507 |
[11] |
Nemirovski A. Prox-method with rate of convergence ![]() ![]() ![]() ![]() ![]() ![]() |
[12] | Xiu N, Zhang J. On finite convergence of proximal point algorithms for variational inequalities. Journal of Mathematical Analysis and Applications, 2005, 312(1): 148-158 |
[13] | Al-Khayyal F, Kyparisis J. Finite convergence of algorithms for nonlinear programs and variational inequalities. Journal of Optimization Theory and Applications, 1991, 70(2): 319-332 |
[14] | Burke J V, Moré J J. On the identification of active constraints. SIAM Journal on Numerical Analysis, 1988, 25(5): 1197-1211 |
[15] | Carmona R, Laurière M. Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II—the finite horizon case. The Annals of Applied Probability, 2022, 32(6): 4065-4105 |
[16] | Fischer A, Kanzow C. On finite termination of an iterative method for linear complementarity problems. Mathematical Programming, 1996, 74: 279-292 |
[17] | Griewank A, Walther A. Finite convergence of an active signature method to local minima of piecewise linear functions. Optimization Methods and Software, 2019, 34(5): 1035-1055 |
[18] | Nguyen L V, Qin X L. Weak sharpness and finite convergence for mixed variational inequalities. Journal of Applied & Numerical Optimization, 2019, 1(1): 77-90 |
[19] | Solodov M V, Tseng P. Some methods based on the D-gap function for solving monotone variational inequalities. Computational Optimization and Applications, 2000, 17: 255-277 |
[20] | Wang C, Liu Q, Yang X. Convergence properties of nonmonotone spectral projected gradient methods. Journal of Computational and Applied Mathematics, 2005, 182(1): 51-66 |
[21] | Wang C, Zhao W, Zhou J, et al. Global convergence and finite termination of a class of smooth penalty function algorithms. Optimization Methods and Software, 2013, 28(1): 1-25 |
[22] | Xiu N, Zhang J. Some recent advances in projection-type methods for variational inequalities. Journal of Computational and Applied Mathematics, 2003, 152(1/2): 559-585 |
[23] | Zhao Z, Liu Z. Finite-time convergence disturbance rejection control for a flexible Timoshenko manipulator. IEEE/CAA Journal of Automatica Sinica, 2020, 8(1): 157-168 |
[24] | Burke J V, Deng S. Weak sharp minima revisited, part II: Application to linear regularity and error bounds. Mathematical Programming, 2005, 104: 235-261 |
[25] | Burke J V, Deng S. Weak sharp minima revisited, Part III: Error bounds for differentiable convex inclusions. Mathematical Programming, 2009, 116(1/2): 37-56 |
[26] | Bonnans J F, Shapiro A. Perturbation Analysis of Optimization Problems. New York: Springer Science & Business Media, 2013 |
[27] | Fong R, Patrick M, Vedaldi A. Understanding deep networks via extremal perturbations and smooth masks//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 2950-2958 |
[28] | Jourani A. Hoffman's error bound, local controllability, and sensitivity analysis. SIAM Journal on Control and Optimization, 2000, 38(3): 947-970 |
[29] | Tirer T, Huang H, Niles-Weed J. Perturbation analysis of neural collapse//International Conference on Machine Learning. 2023: 34301-34329 |
[30] | Wang C Y, Zhang J Z, Zhao W L. Two error bounds for constrained optimization problems and their applications. Applied Mathematics and Optimization, 2008, 57: 307-328 |
[31] | Xu K, Shi Z, Zhang H, et al. Automatic perturbation analysis for scalable certified robustness and beyond. Advances in Neural Information Processing Systems, 2020, 33: 1129-1141 |
[32] | Zheng X Y, Yang X Q. Weak sharp minima for semi-infinite optimization problems with applications. SIAM Journal on Optimization, 2007, 18(2): 573-588 |
[33] | Burke J V, Ferris M C. Weak sharp minima in mathematical programming. SIAM Journal on Control and Optimization, 1993, 31(5): 1340-1359 |
[34] | Marcotte P, Zhu D. Weak sharp solutions of variational inequalities. SIAM Journal on Optimization, 1998, 9(1): 179-189 |
[35] | Zhou J, Wang C. New characterizations of weak sharp minima. Optimization Letters, 2012, 6: 1773-1785 |
[36] | Burke J V, Ferris M C. Characterization of solution sets of convex programs. Operations Research Letters, 1991, 10(1): 57-60 |
[37] | Rockafellar R T. Convex Analysis. Princeton: Princeton Univ Press, 1970 |
[38] | Calamai P H, Moré J J. Projected gradient methods for linearly constrained problems. Mathematical Programming, 1987, 39(1): 93-116 |
[1] | 聂佳琳, 龙宪军. 求解非光滑鞍点问题的黄金比率原始对偶算法[J]. 数学物理学报, 2024, 44(4): 1080-1091. |
[2] | 胡珊珊, 贺素香. 非负组稀疏约束优化问题的最优性条件[J]. 数学物理学报, 2024, 44(2): 500-512. |
[3] | 黄嘉译, 孙祥凯. 一类两阶段自适应鲁棒多目标规划的对偶性刻画[J]. 数学物理学报, 2024, 44(1): 185-194. |
[4] | 李旭琳,贺素香,王传美. 基于 SCAD_L![]() |
[5] | 曾静,彭家玉. 一般经济均衡的本质稳定性及Hadamard适定性[J]. 数学物理学报, 2023, 43(3): 930-938. |
[6] | 肖彩云,孙祥凯. 一类带多项式约束的不确定凸优化问题的鲁棒可行性半径刻画[J]. 数学物理学报, 2022, 42(5): 1551-1559. |
[7] | 许文丁,钟婷. 非光滑牛顿算法的收敛性[J]. 数学物理学报, 2022, 42(5): 1537-1550. |
[8] | 谢亚君,马昌凤. 源于自由边值离散的弱非线性互补问题的m+1阶收敛性算法[J]. 数学物理学报, 2022, 42(5): 1506-1516. |
[9] | 潘庭葳,贺素香. 双重稀疏约束优化问题的一种贪婪单纯形算法[J]. 数学物理学报, 2022, 42(3): 920-933. |
[10] | 杨静,龙宪军. 关于伪单调变分不等式与不动点问题的新投影算法[J]. 数学物理学报, 2022, 42(3): 904-919. |
[11] | 王娇浪,方东辉. 一类非凸约束优化问题的近似最优性条件及其混合型对偶[J]. 数学物理学报, 2022, 42(3): 651-660. |
[12] | 曾静,胡瑞婷. 向量优化问题Benson真有效解的稳定性[J]. 数学物理学报, 2022, 42(1): 35-44. |
[13] | 贺月红,龙宪军. 求解伪单调变分不等式问题的惯性收缩投影算法[J]. 数学物理学报, 2021, 41(6): 1897-1911. |
[14] | 赵玉莹,温玉珍. 模糊厌恶下最小Drawdown概率的最优投资再保险策略[J]. 数学物理学报, 2021, 41(4): 1147-1165. |
[15] | 谢亚君. 一类基于Halley-Newton型的有效修正算法[J]. 数学物理学报, 2021, 41(4): 1066-1078. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 40
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 55
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|