[1] |
Ye J. Least squares linear discriminant analysis//Proceedings of the 24th International Conference on Machine Learning. 2007: 1087-1093
|
[2] |
Ma Z, Nie F, Yang Y, et al. Discriminating joint feature analysis for multimedia data understanding. IEEE Transactions on Multimedia, 2012, 14(6): 1662-1672
|
[3] |
Ma Z, Yang Y, Sebe N, et al. Multimedia event detection using a classifier-specific intermediate representation. IEEE Transactions on Multimedia, 2013, 15(7): 1628-1637
|
[4] |
Ji S, Tang L, Yu S, Ye J. A shared-subspace learning framework for multi-label classification. ACM Transactions on Knowledge Discovery from Data (TKDD), 2010, 4(2): 1-29
|
[5] |
Seung H S, Lee D D. The manifold ways of perception. Science, 2000, 290(5500): 2268-2269
pmid: 11188725
|
[6] |
Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326
doi: 10.1126/science.290.5500.2323
pmid: 11125150
|
[7] |
Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering//Advances in Neural Information Processing Systems. Cambridge: MIT press, 2001, 14
|
[8] |
Zhang S, Ma Z, Tan H. On the equivalence of HLLE and LTSA. IEEE Transactions on Cybernetics, 2017, 48(2): 742-753
|
[9] |
Lai Z, Mo D, Wong W K, et al. Robust discriminant regression for feature extraction. IEEE Transactions on Cybernetics, 2017, 48(8): 2472-2484
|
[10] |
Nie F, Huang H, Cai X, Ding C H. Efficient and robust feature selection via joint $ L_{2, 1} $ -norms minimization//Advances in Neural Information Processing Systems, 2010: 1813-1821
|
[11] |
Sato K, Sato H. Structure-preserving $ H^{2} $ optimal model reduction based on the Riemannian trust-region method. IEEE Transactions on Automatic Control, 2017, 63(2): 505-512
|
[12] |
Sato H, Sato K. Riemannian gradient-based online identification method for linear systems with symmetric positive-definite matrix// 2019 IEEE 58th Conference on Decision and Control (CDC), 2019: 3593-3598
|
[13] |
Sato K. Riemannian optimal model reduction of linear port-Hamiltonian systems. Automatica, 2018, 93: 428-434
|
[14] |
Sato K. Riemannian optimal control and model matching of linear port-Hamiltonian systems. IEEE Transactions on Automatic Control, 2017, 62(12): 6575-6581
|
[15] |
Sato K, Sato H, Damm T. Riemannian optimal identification method for linear systems with symmetric positive-definite matrix. IEEE Transactions on Automatic Control, 2020, 65(11): 4493-4508
|
[16] |
Chiang C Y, Lin M M, Jin X Q. Riemannian inexact Newton method for structured inverse eigenvalue and singular value problems. BIT Numerical Mathematics, 2019, 59: 675-694
|
[17] |
Ishteva M, Absil P A, Huffel S V, Lathauwer L D. Best low multilinear rank approximation of higher-order tensors, based on the Riemannian trust-region scheme. SIAM Journal on Matrix Analysis and Applications, 2011, 32(1): 115-135
|
[18] |
Sato H, Iwai T. A Riemannian optimization approach to the matrix singular value decomposition. SIAM Journal on Optimization, 2013, 23(1): 188-212
|
[19] |
Wang Y, Zhao Z, Bai Z J. Riemannian Newton-CG methods for constructing a positive doubly stochastic matrix from spectral data. Inverse Problems, 2020, 36(11): 115006
|
[20] |
Yao T T, Bai Z J, Zhao Z, Ching W K. A riemannian fletcher-reeves conjugate gradient method for doubly stochastic inverse eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 2016, 37(1): 215-234
|
[21] |
Yao T T, Bai Z J, Jin X Q, Zhao Z. A geometric Gauss-Newton method for least squares inverse eigenvalue problems. BIT Numerical Mathematics, 2020, 60: 825-852
|
[22] |
Zhao Z, Jin X Q, Bai Z J. A geometric nonlinear conjugate gradient method for stochastic inverse eigenvalue problems. SIAM Journal on Numerical Analysis, 2016, 54(4): 2015-2035
|
[23] |
Zhao Z, Bai Z J, Jin X Q. A Riemannian inexact Newton-CG method for constructing a nonnegative matrix with prescribed realizable spectrum. Numerische Mathematik, 2018, 140(4): 827-855
|
[24] |
Zhao Z, Jin X Q, Yao T T. A Riemannian under-determined BFGS method for least squares inverse eigenvalue problems. BIT Numerical Mathematics, 2022, 62(1): 311-337
|
[25] |
Zhao Z, Yao T T, Bai Z J, Jin X Q. A Riemannian inexact Newton dogleg method for constructing a symmetric nonnegative matrix with prescribed spectrum. Numerical Algorithms, 2023, 92: 1951-1981
|
[26] |
Jiang Y L, Xu K L. Riemannian modified Polak-Ribière-Polyak conjugate gradient order reduced model by tensor techniques. SIAM Journal on Matrix Analysis and Applications, 2020, 41(2): 432-463
|
[27] |
Oviedo H. Global convergence of Riemannian line search methods with a Zhang-Hager-type condition. Numerical Algorithms, 2022, 91(3): 1183-1203
|
[28] |
Sato H. Riemannian Optimization and Its Applications. Brelin: Springer, 2021
|
[29] |
Sato H, Iwai T. A new, globally convergent Riemannian conjugate gradient method. Optimization, 2015, 64(4): 1011-1031
|
[30] |
Sato H. A Dai-Yuan-type Riemannian conjugate gradient method with the weak Wolfe conditions. Computational Optimization and Applications, 2016, 64(1): 101-118
|
[31] |
Sakai H, Iiduka H. Hybrid Riemannian conjugate gradient methods with global convergence properties. Computational Optimization and Applications, 2020, 77(3): 811-830
|
[32] |
Zhu X. A Riemannian conjugate gradient method for optimization on the Stiefel manifold. Computational optimization and Applications, 2017, 67(1): 73-110
|
[33] |
Vandereycken B. Low-rank matrix completion by Riemannian optimization. SIAM Journal on Optimization, 2013, 23(2): 1214-1236
|
[34] |
Zhang H, Hager W W. A nonmonotone line search technique and its application to unconstrained optimization. SIAM Journal on Optimization, 2004, 14(4): 1043-1056
|
[35] |
Absil P A, Mahony R, Sepulchre R. Optimization Algorithms on Matrix Manifolds. Princeton: Princeton University Press, 2009
|
[36] |
Ring W, Wirth B. Optimization methods on Riemannian manifolds and their application to shape space. SIAM Journal on Optimization, 2012, 22(2): 596-627
|
[37] |
Absil P A, Mahony R, Trumpf J. An extrinsic look at the Riemannian Hessian//International Conference on Geometric Science of Information. Berlin: Springer, 2013: 361-368
|
[38] |
Nocedal J, Wright S J. Numerical Optimization. Springer, 1999
|
[39] |
Grippo L, Lampariello F, Lucidi S. A nonmonotone line search technique for Newton's method. SIAM Journal on Numerical Analysis, 1986, 23(4): 707-716
|
[40] |
Zhang L, Zhou W, Li D. Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search. Numerische Mathematik, 2006, 104(4): 561-572
|
[41] |
王松桂, 吴密霞, 贾忠贞. 矩阵不等式. 北京: 科学出版社, 2006
|
|
Wang S G, Wu M X, Jia Z Z. Matrix Inequalities. Beijing: Science Press, 2006
|
[42] |
Wen Z, Yin W. A feasible method for optimization with orthogonality constraints. Mathematical Programming, 2013, 142(1/2): 397-434
|
[43] |
Li J F, Li W, Vong S W, et al. A Riemannian optimization approach for solving the generalized eigenvalue problem for nonsquare matrix pencils. Journal of Scientific Computing, 2020, 82: 1-43
|
[44] |
Boumal N, Mishra B, Absil P A, Sepulchre R. Manopt, a Matlab toolbox for optimization on manifolds. Journal of Machine Learning Research, 2014, 15(1): 1455-1459
|