[1] |
Benjamin T B, Bona J L, Mahony J J. Model equations for long waves in nonlinear dispersive systems. Philos Trans Roy Soc London Ser A, 1972, 272: 47-78
|
[2] |
Bona J L, Ponce G, Saut J C, Sparber C. Dispersive blow-up for nonlinear Schr¨odinger equations revisited. J Math Pures Appl, 2014, 102: 782-811
|
[3] |
Bona J L, Saut J C. Dispersive blow-up of solutions of generalized KdV equations. J Differ Equ, 1993, 103: 3-57
|
[4] |
Bona J L, Saut J C. Dispersive blow-up II. Schrödinger equations, optical and oceanic rogue waves. Chin Ann Math Ser B, 2010, 31: 793-818
|
[5] |
Bourgain J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Geom Funct Anal, 1993, 3(2): 107-156
|
[6] |
Carleson L. Some analytical problems related to statistical mechanics//Benedetto J J. Euclidean Harmonic Analysis. Heidelberg: Springer, 1980, 779: 5-45
|
[7] |
Chen W G, Li J F, Miao C X, Wu J X. Low regularity solutions of two fifth-order KdV type equations. J Anal Math, 2009, 107: 221-238
|
[8] |
Compaan E. A smoothing estimate for the nonlinear Schrödinger equation. UIUC research experience for graduate students, August 2013
|
[9] |
Compaan E, Lucà R, Staffilani G. Pointwise convergence of the Schrödinger flow. Int Math Res Not 2021, 2021(1): 599-650
|
[10] |
Cui S B, Tao S P. Strichartz estimates for dispersive equations and solvability of the Kawahara equation. J Math Anal Appl, 2005, 304: 683-702
|
[11] |
Du X M, Zhang R X. Sharp $L^2$ estimates of the Schr¨odinger maximal function in higher dimensions. Ann Math, 2019, 189: 837-861
|
[12] |
Gel’fand I M, Shilov G E. Generalized Functions, volume 1, Properties and Operations. New York: academic press, 1964,
|
[13] |
Grafakos L. Modern Fourier Analysis. New York: Springer, 2009
|
[14] |
Jia Y L, Huo Z H. Well-posedness for the fifth-order shallow water equations. J Diff Eqns, 2009, 246: 2448-2467
|
[15] |
Kawahara T. Oscillatory solitary waves in dispersive media. J Phys Soc Japan, 1972, 33: 260-264
|
[16] |
Kenig C E, Ruiz A, Sogge C D. Uniform Sobolev inequalities and unique continuation differential operators. Duke Math, 1987, 55: 329-347
|
[17] |
Linares F, Pastor A, Drumond Silva J. Dispersive blow-up for solutions the Zakharov-Kuznetsov equation. Annales de l’Institut Henri Poincar´e C. Analyse non linèaire, 2021, 38: 281-300
|
[18] |
Linares F, Ramos J P G. Maximal function estimates and local well-posedness for the generalized Zakharov- Kuznetsov equation. SIAM J Math Anal, 2021, 53: 914-936
|
[19] |
Tao S P, Cui S B. Local and global existence of solutions to initial value problems of modified nonlinear Kawahara equation. Acta Math Sin Engl Ser, 2005, 21: 1035-1044
|
[20] |
Yan W, Li Y S. The Cauchy problem for Kawahara equation in Sobolev spaces with low regularity. Math Meth Appl Sci, 2010, 33: 1647-1660
|
[21] |
Yan W, Li Y S. Ill-posedness of modified Kawahara equation and Kaup-Kupershmidt equation. Acta Math Sci, 2012, 32B: 710-716
|
[22] |
Yan W, Li Y S, Yang X Y. The Cauchy problem for the modified Kawahara equation in Sobolev spaces with low regularity. Math Comput Modelling, 2011, 54: 1252-1261
|
[23] |
Yan W, Wang W M, Yan X Q. Convergence problem of the Kawahara equation on the real line. J Math Anal Appl, 2022, 55: 126386
|
[24] |
Yan W, Yan X Q, Duan J Q, Huang J H. The Cauchy problem for the generalized KdV equation with rough data and random data. arXiv: 2011.07128
|
[25] |
Zhang Y T, Yan W, Yan X Q, Zhao Y J. Convergence problem of Schr¨odinger equation and wave equation in low regularity spaces. J Math Anal Appl, 2023, 522: 126921
|