数学物理学报 ›› 2024, Vol. 44 ›› Issue (3): 595-608.

• • 上一篇    下一篇

修正Kawahara方程的收敛问题与色散爆破

王伟敏(),闫威*()   

  1. 河南师范大学数学与信息科学学院 河南 新乡 430007
  • 收稿日期:2023-08-16 修回日期:2024-01-02 出版日期:2024-06-26 发布日期:2024-05-17
  • 通讯作者: *闫威, Email: 011133@htu.edu.cn
  • 作者简介:王伟敏, Email: ydn1129@163.com
  • 基金资助:
    河南省骨干教师项目(2017GGJS044)

Convergence Problem and Dispersive Blow-up for the Modified Kawahara Equation

Wang Weimin(),Yan Wei*()   

  1. School of Mathematics and Information Science, Henan Normal University, Henan Xinxiang 453007
  • Received:2023-08-16 Revised:2024-01-02 Online:2024-06-26 Published:2024-05-17
  • Supported by:
    Young Core Teachers Problem of Henan Province(2017GGJS044)

摘要:

该文主要研究修正 Kawahara 方程的收敛问题与色散爆破. 首先, 利用傅里叶限制范数法, 高低频分解技巧以及 Strichartz 估计, 用三种不同的方法证明在空间 Hs(R) (s14) 中, 对几乎处处的 xR, 当 t0 时, u(x,t)u0(x), 其中 u(x,t) 是修正 Kawahara 方程的解, u0(x) 是其柯西问题的初值. 其次, 利用三线性估计和傅里叶限制范数法, 证明在空间 Hs(R) (s>0) 中, 当 t0 时, u(x,t)U(t)u0(x) (与 x 无关). 最后, 给出方程解的色散爆破.

关键词: 修正 Kawahara 方程, 逐点收敛, 一致收敛, 色散爆破

Abstract:

In this paper, we consider the convergence problem and dispersive blow-up for the modified Kawahara equation. Firstly, we prove that u(x,t)u0(x), a.e. xR as t0 by the Fourier restriction norm method, high-low frequency technique and Strichartz estimate, respectively. Here u(x,t) is the solution of the modified Kawahara equation, and the initial value u0(x)Hs(R) (s14). Secondly, using the Fourier restriction norm method, we show that u(x,t)U(t)u0(x) as t0 with u0(x)Hs(R) (s>0). Finally, we establish the dispersive blow-up of the modified Kawahara equation.

Key words: Modified Kawahara equation, Pointwise convergence, Uniform convergence, Dispersive blow-up

中图分类号: 

  • O175.2