[1] |
Fokas A S. The Korteweg-de Vries equation and beyond. Acta Appl Math, 1995, 39: 295-305
|
[2] |
Camassa R, Holm D. An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993, 71(11): 1661-1664
doi: 10.1103/PhysRevLett.71.1661
pmid: 10054466
|
[3] |
Fokas A. On a class of physically important integrable equations. Phys D, 1995, 87: 145-150
|
[4] |
Fuchssteiner B. Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation. Phys D, 1996, 95: 229-243
|
[5] |
Olver P, Rosenau P. Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys Rev E, 1996, 53: 1900-1906
pmid: 9964452
|
[6] |
Qiao Z. A new integrable equation with cuspons and W/M-shape-peaks solitons. J Math Phys, 2006, 47: 112701
|
[7] |
Fisher M, Schiff J. The Camassa-Holm equation: Conserved quantities and the initial value problem. Phys Lett A, 1999, 259(5): 371-376
|
[8] |
Himonas A, Mantzavinos D. The Cauchy problem for the Fokas-Olver-Rosenau-Qiao equation. Nonlinear Anal, 2014, 95: 499-529
|
[9] |
Chang X, Szmigielski J. Lax integrability and the peakon problem for the modified Camassa-Holm equation. Commun Math Phys, 2018, 358: 295-341
|
[10] |
Kang J, Liu X, Qu C. On an integrable multi-component Camassa-Holm system arising from Mbius geometry. Proc R Soc A, 2021, 477(2251): 20210164
|
[11] |
Yang S, Qiao Z. Qualitative analysis for a two-component peakon system with cubic nonlinearity. J Math Phys, 2022, 63: 121504
|
[12] |
Chen M, Liu Y, Qu C, Zhang H. Oscillation-Induced blow-up to the modified Camassa-Holm equation with linear dispersion. Adv Math, 2015, 272: 225-251
|
[13] |
Gui G, Liu Y, Olver P, Qu C. Wave-Breaking and peakons for a modified Camassa-Holm equation. Commun Math Phys, 2013, 319: 731-759
|
[14] |
Constantin A, Escher J. Well-posedness, global existence, and blow up phenomena for a periodic quasi-linear hyperbolic equation. Comm Pure Appl Math, 1998, 51(5): 475-504
|
[15] |
Liu X, Qiao Z, Yin Z. On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity. Commun Pure Appl Anal, 2014, 13: 1283-1304
|
[16] |
Xu R, Yang Y. Local well-posedness and decay for some generalized shallow water equations. J Differ Equations, 2023, 367: 689-728
|
[17] |
Chen M, Guo F, Liu Y, Qu C. Analysis on the blow-up of solutions to a class of integrable peakon equations. J Funct Anal, 2016, 270(6): 2343-2374
|
[18] |
Xia B, Qiao Z, Li J. An integrable system with peakon, complex peakon, weak kink, and kink-peakon interactional solutions. Commun Nonlinear Sci Numer Simulat, 2018, 63: 292-306
|
[19] |
Qin G, Yan Z, Guo B. The Cauchy problem and multi-peakons for the mCH-Novikov-CH equation with quadratic and cubic nonlinearities. J Dyn Differ Equ, 2023, 35: 3295-3354
|
[20] |
Himonas A A, Misiolek G, Ponce G, Zhou Y. Persistence properties and unique continuation of solutions of the Camassa-Holm equation. Comm Math Phys, 2007, 271: 511-522
|
[21] |
Cui W, Han L. Infinite propagation speed and asymptotic behavior for a generalized Camassa-Holm equation with cubic nonlinearity. Appl Math Lett, 2018, 77: 13-20
|
[22] |
Tian S. Infinite propagation speed of a weakly dissipative modified two-component Dullin-Gottwald-Holm system. Appl Math Lett, 2019, 89: 1-7
|
[23] |
Zhu M, Jiang Z, Qiao Z. Persistence property and infinite propagation speed for the b-family of Fokas- Olver-Rosenau-Qiao (bFORQ) model. Appl Math Lett, 2022, 124: 10765
|
[24] |
Zhu M, Jiang Z, Qiao Z. Analytical properties for the fifth-order b-family Novikov model. J Evol Equ, 2022, 22: Article number 19
|
[25] |
田守富. 一个弱耗散修正的二分量Dullin-Gottwald-Holm 系统解的行为研究. 数学物理学报, 2020, 40A(5): 1204-1223
|
|
Tian S F. On the behavior of the solution of a weakly dissipative modified two-component Dullin-Gottwald- Holm system. Acta Math Sci, 2020, 40A(5): 1204-1223
|