数学物理学报 ›› 2024, Vol. 44 ›› Issue (1): 227-245.
收稿日期:
2022-10-26
修回日期:
2023-10-07
出版日期:
2024-02-26
发布日期:
2024-01-10
通讯作者:
刘俊利, E-mail:jlliu2008@126.com
作者简介:
韩梦洁, E-mail:基金资助:
Han Mengjie1(),Liu Junli1,*(
),Zhang Tailei2(
)
Received:
2022-10-26
Revised:
2023-10-07
Online:
2024-02-26
Published:
2024-01-10
Supported by:
摘要:
为了研究动物种群中媒介对炭疽传播的影响, 该文依据尸食性蝇与血食性蝇的传播机制, 建立了一个确定性传染病模型. 利用微分方程基本定理证明了模型解的非负性和有界性, 给出了平衡点存在的充分条件, 定义了模型的几类再生数, 利用线性化方法和M-矩阵等方法对平衡点的稳定性进行了分析, 并研究了疾病的持久性. 利用数值模拟研究了参数对基本再生数的影响. 研究结果表明: 及时清理染病尸体, 尽量消除苍蝇的繁殖地点, 对苍蝇使用杀虫剂对炭疽在动物种群中传播具有一定的抑制作用.中文摘要
中图分类号:
韩梦洁, 刘俊利, 张太雷. 基于两类媒介的炭疽传播模型的全局动力学分析[J]. 数学物理学报, 2024, 44(1): 227-245.
Han Mengjie, Liu Junli, Zhang Tailei. Global Dynamics Analysis of Anthrax Transmission Model Based on Two Kinds of Vectors[J]. Acta mathematica scientia,Series A, 2024, 44(1): 227-245.
[1] |
Carlson C J, Getz W M, Kausrud K L, et al. Spores and soil from six sides: Interdisciplinarity and the environmental biology of anthrax (Bacillus anthracis). Biological Reviews, 2018, 93(4): 1813-1831
doi: 10.1111/brv.2018.93.issue-4 |
[2] | Turnbull P C. Guidelines for the Surveillance and Control of Anthrax in Humans and Animals, Third Edition. United States of America: World Health Organization, 1998 |
[3] |
Fasanella A, Galante D, Garofolo G, et al. Anthrax undervalued zoonosis. Veterinary Microbiology, 2010, 140(3/4): 318-331
doi: 10.1016/j.vetmic.2009.08.016 |
[4] |
Furniss P R, Hahn B D. A mathematical model of an anthrax epizoötic in the Kruger National Park. Applied Mathematical Modelling, 1981, 5(3): 130-136
doi: 10.1016/0307-904X(81)90034-2 |
[5] |
Friedman A, Yakubu A A. Anthrax epizootic and migration: Persistence or extinction. Mathematical Biosciences, 2013, 241(1): 137-144
doi: 10.1016/j.mbs.2012.10.004 pmid: 23137874 |
[6] |
Saad-Roy C M, Van den Driessche P, Yakubu A A. A mathematical model of anthrax transmission in animal populations. Bulletin of Mathematical Biology, 2017, 79(2): 303-324
doi: 10.1007/s11538-016-0238-1 pmid: 28035484 |
[7] |
Lutz L, Williams K A, Villet M H, et al. Species identification of adult African blowflies (diptera: Calliphoridae) of forensic importance. International Journal of Legal Medicine, 2018, 132(3): 831-842
doi: 10.1007/s00414-017-1654-y pmid: 28849264 |
[8] | Ganeva D. Analysis of the Bulgarian tabanid fauna with regard to its potential for epidemiological involvement. Bulgarian Journal of Veterinary Medicine, 2004, 7(1): 1-8 |
[9] |
Blackburn J K, Van Ert M, Mullins J C, et al. The necrophagous fly anthrax transmission pathway: Empirical and genetic evidence from wildlife epizootics. Vector-Borne and Zoonotic Diseases, 2014, 14(8): 576-583
doi: 10.1089/vbz.2013.1538 |
[10] | Navdarashvili A, Doker T J, Geleishvili M, et al. Human anthrax outbreak associated with livestock exposure: Georgia, 2012. Epidemiology & Infection, 2016, 144(1): 76-87 |
[11] |
Collier R J, Young J A T. Anthrax toxin. Annual Review of Cell and Developmental Biology, 2003, 19(1): 45-70
doi: 10.1146/cellbio.2003.19.issue-1 |
[12] |
Baldacchino F, Muenworn V, Desquesnes M, et al. Transmission of pathogens by Stomoxys flies (Diptera, Muscidae): A review. Parasite, 2013, 20, 26
doi: 10.1051/parasite/2013026 pmid: 23985165 |
[13] |
Blackburn J K, Curtis A, Hadfield T L, et al. Confirmation of Bacillus anthracis from flesh-eating flies collected during a West Texas anthrax season. Journal of Wildlife Diseases, 2010, 46(3): 918-922
pmid: 20688697 |
[14] |
Mushayabasa S, Marijani T, Masocha M. Dynamical analysis and control strategies in modeling anthrax. Computational and Applied Mathematics, 2017, 36(3): 1333-1348
doi: 10.1007/s40314-015-0297-1 |
[15] | Smith H L. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs, vol 41. Providence: American Mathematical Society, 1995 |
[16] | Zhao X Q, Jing Z J. Global asymptotic behavior in some cooperative systems of functional differential equations. Canadian Applied Mathematics Quarterly, 1996, 4(4): 421-444 |
[17] |
Lou Y, Zhao X Q. Modelling malaria control by introduction of larvivorous fish. Bulletin of Mathematical Biology, 2011, 73(10): 2384-2407
doi: 10.1007/s11538-011-9628-6 pmid: 21347816 |
[18] |
Diekmann O, Heesterbeek J A P, Roberts M G. The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface, 2010, 7(47): 873-885
doi: 10.1098/rsif.2009.0386 pmid: 19892718 |
[19] |
Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 2002, 180(1/2): 29-48
doi: 10.1016/S0025-5564(02)00108-6 |
[20] |
Ruan S, Wei J. On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion. Mathematical Medicine and Biology, 2001, 18(1): 41-52
doi: 10.1093/imammb/18.1.41 |
[21] |
Li X, Wei J. On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays. Chaos, Solitons & Fractals, 2005, 26(2): 519-526
doi: 10.1016/j.chaos.2005.01.019 |
[22] | Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Sciences. New York: Academic Press, 1976 |
[23] | LaSalle J P. The Stability of Dynamical Systems. Philadephia: Society for Industrial and Applied Mathematics, 1976 |
[24] |
Hirsch M W, Smith H L, Zhao X Q. Chain transitivity, attractivity, and strong repellors for semidynamical systems. Journal of Dynamics and Differential Equations, 2001, 13(1): 107-131
doi: 10.1023/A:1009044515567 |
[25] |
Hsieh Y H, Liu J, Tzeng Y H, et al. Impact of visitors and hospital staff on nosocomial transmission and spread to community. Journal of Theoretical Biology, 2014, 356: 20-29
doi: 10.1016/j.jtbi.2014.04.003 |
[26] |
Liu X, Takeuchi Y. Spread of disease with transport-related infection and entry screening. Journal of Theoretical Biology, 2006, 242: 517-528
pmid: 16678858 |
[1] | 邱仰聪, 王其如. 一阶非线性时标动态方程的 Hyers-Ulam-Rassias 稳定性[J]. 数学物理学报, 2024, 44(2): 465-475. |
[2] | 刘鑫艳, 李晓光. 一类非齐次非线性 Schrödinger 方程驻波的轨道稳定性[J]. 数学物理学报, 2024, 44(2): 476-483. |
[3] | 李远飞, 李丹丹, 石金诚. 温度相关双扩散模型在半无穷柱体上的结构稳定性[J]. 数学物理学报, 2024, 44(1): 120-132. |
[4] | 徐斐, 张勇. 分数阶 Burgers 方程时间周期弱解的唯一性与渐近稳定性[J]. 数学物理学报, 2023, 43(6): 1710-1722. |
[5] | 马亚妮, 袁海龙. 一类具有时滞的 Gierer-Meinhardt 活化抑制模型的分支分析[J]. 数学物理学报, 2023, 43(6): 1774-1788. |
[6] | 庞玉婷, 赵东霞. 星形明渠网络系统的 PDP 反馈控制和指数镇定[J]. 数学物理学报, 2023, 43(6): 1803-1813. |
[7] | 范示示, 李海侠, 路银豆. 具有捕获项的 Beddington-DeAnglis 型捕食-食饵扩散模型的动力学分析[J]. 数学物理学报, 2023, 43(6): 1929-1942. |
[8] | 庞玉婷,赵东霞,赵鑫,高彩霞. 一类 2 |
[9] | 李丹,魏凤英,毛学荣. 具有媒体报道的 SVIR 传染病模型的生存性分析[J]. 数学物理学报, 2023, 43(5): 1595-1606. |
[10] | 廖远康. 粘性依赖于密度的一维等熵可压缩 Navier-Stokes 方程组粘性激波的非线性稳定性[J]. 数学物理学报, 2023, 43(4): 1149-1169. |
[11] | 何旭阳,毛明志,张腾飞. 一类具有泊松跳的脉冲中立型随机泛函微分方程的存在性及稳定性研究[J]. 数学物理学报, 2023, 43(4): 1221-1243. |
[12] | 李继泽,邱吉秀,周永辉. 受观察噪声影响的不可料非线性滤波方程及线性滤波稳定性[J]. 数学物理学报, 2023, 43(4): 1244-1254. |
[13] | 张海群. 有限理性与一类群体博弈弱有效Nash均衡的稳定性[J]. 数学物理学报, 2023, 43(4): 1311-1320. |
[14] | 黎小丽,陈晓莉. 部分耗散的三维Boussinesq方程在静力平衡附近的稳定性和指数衰减[J]. 数学物理学报, 2023, 43(3): 754-770. |
[15] | 武文俊,杨光惠,房才雅,杨辉. 主从群体博弈合作均衡的通有稳定性[J]. 数学物理学报, 2023, 43(3): 921-929. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 159
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 71
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|