数学物理学报 ›› 2024, Vol. 44 ›› Issue (1): 246-256.

• • 上一篇    

基于向量楔积的两体量子系统的纠缠度量

杨招弟(),贺衎*(),段周波   

  1. 太原理工大学数学学院 太原 030024
  • 收稿日期:2022-12-26 修回日期:2023-10-17 出版日期:2024-02-26 发布日期:2024-01-10
  • 通讯作者: 贺衎, E-mail:actams@apm.ac.cn
  • 作者简介:杨招弟, E-mail:actams@wipm.ac.cn
  • 基金资助:
    国家自然科学基金(12271394);山西省重点研发项目(202102010101004)

Entanglement Measure of Two-body Quantum System Based on the Wedge Product of Vectors

Yang Zhaodi(),He Kan(),Duan Zhoubo   

  1. College of Mathematics, Taiyuan University of Technology, Taiyuan 030024
  • Received:2022-12-26 Revised:2023-10-17 Online:2024-02-26 Published:2024-01-10
  • Supported by:
    NSFC(12271394);Key Research and Development Program of Shanxi Province(202102010101004)

摘要:

由于量子状态对应为一个 Hilbert 空间中的单位向量, 因此利用向量的几何性质刻画量子状态的纠缠性是一个有趣的数学物理交叉课题. 已有学者基于两个向量的楔积的模长在两体纯态系统$C^{2}\otimes C^{2}$上定义了纠缠度量, 其模长在几何上对应于平面上的一个定向平行四边形的面积. 该文利用向量的楔积的模长进一步给出了两体纯态系统$C^{3}\otimes C^{3}$和$C^{d}\otimes C^{d}$上的纠缠度量, 在几何上它们分别对应于一个定向平行六面体和$d\times(d-1)\times\cdots\times4$个定向平行六面体的体积. 此外, 提出了判定可分态的几何判据. 结果表明, 基于几何意义定义的纠缠度量是一种既简单又直观的度量方法.

关键词: 纠缠度量, 楔积, 几何判据

Abstract:

The characterization of quantum entanglement is an unsolved problem. It is interested to measure entanglement based on the geometric properties of vectors because a quantum state is represented as a unit vector in a Hilbert space. Some scholars have defined an entanglement measure on the two-body pure state system$C^{2}\otimes C^{2}$based on the modulus length of the wedge product of two vectors, whose modulus length corresponds geometrically to the area of an oriented parallelogram on a plane. In the work, we give the entanglement measures on the two-body pure state system$C^{3}\otimes C^{3}$and$C^{d}\otimes C^{d}$by using the modular length of the wedge product of vectors. They geometrically correspond to the volume of an oriented parallelepiped and$d\times(d-1)\times\cdots\times4$oriented parallelepipeds. In addition, We propose a geometric criterion for determining separable states. The results show that the entanglement measure$E$defined based on the geometric background of mathematics is a simple and intuitive measurement method.

Key words: Entanglement measure, Wedge product, Geometric criterion

中图分类号: 

  • O175.23