[1] |
Citti G, Manfredini M. A degenerate parabolic equation arising in image processing. Commun Appl Anal, 2004, 8(1): 125-141
|
[2] |
Ghil M. Climate stability for a Sellers type mode. J Atmo Sci, 1976, 29(5): 483-493
|
[3] |
Ethier S N, Kurtz T G. Fleming-Viot processes in population genetics. SIAM J Control Optim, 1993, 31(2): 345-386
doi: 10.1137/0331019
|
[4] |
Alabau-Boussouira F, Cannarsa P, Leugering G. Control and stabilization of degenerate wave equation. SIAM J Control Optim, 2017, 55(3): 2052-2087
doi: 10.1137/15M1020538
|
[5] |
Zhang M M, Gao H. Null controllability of some degenerate wave equations. J Syst Sci Complex, 2017, 30(5): 1027-1041
doi: 10.1007/s11424-016-5281-3
|
[6] |
Zhang M M, Gao H. Persistent regional null controllability of some degenerate wave equations. Math Meth Appl Sci, 2017, 40(16): 5821-5830
doi: 10.1002/mma.v40.16
|
[7] |
Zhang M M, Gao H. Interior controllability of semi-linear degenerate wave equations. J Math Anal Appl, 2018, 457(1): 10-22
doi: 10.1016/j.jmaa.2017.07.057
|
[8] |
Bai J Y, Chai S G. Exact controllability for some degenerate wave equations. Math Meth Appl Sci, 2020, 43(12): 7292-7302
doi: 10.1002/mma.v43.12
|
[9] |
Bai J Y, Chai S G. Exact controllability for a one-dimensional degenerate wave equation in domains with moving boundary. Appl Math Lett, 2021, 119: Article ID 107235
|
[10] |
Gumowski I, Mira C. Optimization in Control Theory and Practice. Cambridge: Cambridge University Press, 1968
|
[11] |
Datko R, Lagness J, Poilis M P. An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J Control Optim, 1986, 24(1): 152-156
doi: 10.1137/0324007
|
[12] |
Datko R. Not all feedback stabilized hyperbolic systems are robust with respect to small time delay in their feedbacks. SIAM J Control Optim, 1988, 26(3): 697-713
doi: 10.1137/0326040
|
[13] |
Wang J N, Yang D Z. Stability and bifurcation of a pathogen-immune model with delay and diffusion effects. Acta Math Sci, 2021, 41A(4): 1204-1217
|
[14] |
Xu G Q, Yung S P, Li L K. Stabilization of wave systems with input delay in the boundary control. ESAIM Control Optim Calc Var, 2006, 12(4): 770-785
doi: 10.1051/cocv:2006021
|
[15] |
Nicaise S, Pignotti C. Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J Control Optim, 2006, 45(5): 1561-1585
doi: 10.1137/060648891
|
[16] |
Nicaise S, Pignotti C. Stabilization of the wave equation with boundary or internal distributed delay. Differential Integral Equ, 2008, 21(9/10): 935-958
|
[17] |
Ait Benhassi E M, Ammari K, Boulite S, Maniar L. Feedback stabilization of a class of evolution equations with delay. J Evol Equ, 2009, 9(1): 103-121
doi: 10.1007/s00028-009-0004-z
|
[18] |
Nicaise S, Valein J. Stabilization of second order evolution equations with unbounded feedback with delay. ESAIM Control Optim Calc Var, 2010, 16(2): 420-456
doi: 10.1051/cocv/2009007
|
[19] |
Ammari K, Nicaise S, Pignotti C. Feedback boundary stabilization of wave equations with interior delay. Syst Control Lett, 2010, 59(10): 623-628
doi: 10.1016/j.sysconle.2010.07.007
|