数学物理学报 ›› 2024, Vol. 44 ›› Issue (1): 120-132.

• • 上一篇    下一篇

温度相关双扩散模型在半无穷柱体上的结构稳定性

李远飞*(),李丹丹,石金诚   

  1. 广州华商学院应用数学系 广州 511300
  • 收稿日期:2022-11-30 修回日期:2023-06-20 出版日期:2024-02-26 发布日期:2024-01-10
  • 通讯作者: 李远飞, E-mail:liqfd@163.com
  • 基金资助:
    广州华商学院科研团队资助(2021HSKT01);国家自然科学基金(11371175)

Structural Stability of Temperature Dependent Double Diffusion Model on a Semi-infinite Cylinder

Li Yuanfei*(),Li Dandan,Shi Jincheng   

  1. Department of Apllied Mathematics, Guangzhou Huashang College, Guangzhou 511300
  • Received:2022-11-30 Revised:2023-06-20 Online:2024-02-26 Published:2024-01-10
  • Supported by:
    Research Team Project of Guangzhou Huashang University(2021HSKT01);National Natural Science Foundation of China(11371175)

摘要:

该文研究了定义在一个半无穷柱体上的温度相关双扩散模型的简化形式. 利用先验估计和加权能量分析法, 证明了当边界条件满足一定的约束条件时模型的解随空间变量指数式衰减. 利用解的先验界和衰减性结果, 得到了解对相互作用系数的结构稳定性.

关键词: 双扩散模型, 空间衰减, 结构稳定性, 相互作用系数

Abstract:

A simplified temperature dependent double diffusion model defined on a semi-infinite cylinder is studied. By using a prior estimates and weighted energy analysis, it is proved that the solution of the model decays exponentially with the space variable when the boundary conditions satisfy certain constraints. The structural stability of the solution to the interaction coefficient is obtained by using the prior bounds and decay result of the solution.

Key words: Double diffusion model, Spatial attenuation, Structural stability, Interaction coefficient

中图分类号: 

  • O175.29