数学物理学报 ›› 2023, Vol. 43 ›› Issue (6): 1681-1698.
收稿日期:
2021-12-23
修回日期:
2023-04-10
出版日期:
2023-12-26
发布日期:
2023-11-16
通讯作者:
*赵志学,E-mail: 基金资助:
Han Zhongjie1,He Yiheng1,Zhao Zhixue2,*()
Received:
2021-12-23
Revised:
2023-04-10
Online:
2023-12-26
Published:
2023-11-16
Supported by:
摘要:
该文主要研究弱耦合弹性板系统的稳定性和最优衰减率, 其中系统中仅有一块板带有阻尼 (粘性阻尼、结构阻尼或 Kelvin-Voigt 阻尼). 基于频域方法和对系统算子细致的谱分析, 导出了系统的最优多项式衰减率. 此外, 还确定了系统的最优衰减率与阻尼阶数之间的关系, 并且发现了一个有趣的现象, 即间接阻尼的阶数越高, 弱耦合板系统衰减越慢. 最后, 通过数值模拟对理论结果进行了验证.
中图分类号:
韩忠杰, 贺以恒, 赵志学. 具有不同类型阻尼弱耦合板方程的间接镇定和最优衰减率[J]. 数学物理学报, 2023, 43(6): 1681-1698.
Han Zhongjie, He Yiheng, Zhao Zhixue. Indirect Stabilization and Optimal Decay Rates of Weakly Coupled Plates with Various Types of Damping[J]. Acta mathematica scientia,Series A, 2023, 43(6): 1681-1698.
[1] | Akil M, Badawi H, Nicaise S. Stability results of locally coupled wave equations with local Kelvin-Voigt damping: Cases when the supports of damping and coupling coefficients are disjoint. Computational and Applied Mathematics, 2022, 41: Article number 240 |
[2] |
Akil M, Issa I, Wehbe A. Energy decay of some boundary coupled systems involving wave Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping. Math Control Relat Fields, 2023, 13(1): 330-381
doi: 10.3934/mcrf.2021059 |
[3] |
Alabau-Boussouira F. Indirect boundary stabilization of weakly coupled hyperbolic systems. SIAM J Control Optim, 2002, 41(2): 511-541
doi: 10.1137/S0363012901385368 |
[4] |
Alabau-Boussouira F, Cannarsa P, Guglielmi R. Indirect stabilization of weakly coupled systems with hybrid boundary conditions. Math Control Relat Fields, 2011, 1(4): 413-436
doi: 10.3934/mcrf.2011.1.413 |
[5] |
Alabau F, Cannarsa P, Komornik V. Indirect internal stabilization of weakly coupled evolution equations. J Evol Equ, 2002, 2: 127-150
doi: 10.1007/s00028-002-8083-0 |
[6] |
Alabau-Boussouira F, Léautaud M. Indirect stabilization of locally coupled wave-type systems. ESAIM Control Optim Calc Var, 2012, 18(2): 548-582
doi: 10.1051/cocv/2011106 |
[7] |
Alabau-Boussouira F, Wang Z, Yu L. A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities. ESAIM Control Optim Calc Var, 2017, 23: 721-749
doi: 10.1051/cocv/2016011 |
[8] |
Ammari K, Fathi H, Robbiano L. Fractional-Feedback stabilization for a class of evolution systems. J Differential Equations, 2020, 268: 5751-5791
doi: 10.1016/j.jde.2019.11.022 |
[9] |
Ammari K, Shel F, Tebou L. Regularity and stability of the semigroup associated with some interacting elastic systems I: A degenerate damping case. J Evol Equ, 2021, 21: 4973-5002
doi: 10.1007/s00028-021-00738-7 |
[10] |
Borichev A, Tomilov Y. Optimal polynomial decay of functions and operator semigroups. Math Ann, 2010, 347: 455-478
doi: 10.1007/s00208-009-0439-0 |
[11] |
Chen G, Russell D L. A mathematical model for linear elastic systems with structural damping. Quart Appl Math, 1982, 39(4): 433-454
doi: 10.1090/qam/1982-39-04 |
[12] |
Cui Y, Wang Z. Asymptotic stability of wave equations coupled by velocities. Math Control Relat Fields, 2016, 6(3): 429-446
doi: 10.3934/mcrf |
[13] |
Fernández Sare H D, Liu Z, Racke R. Stability of abstract thermoelastic systems with inertial terms. J Differential Equations, 2019, 267(12): 7085-7134
doi: 10.1016/j.jde.2019.07.015 |
[14] |
Fu X. Sharp decay rates for the weakly coupled hyperbolic system with one internal damping. SIAM J Control Optim, 2012, 50(3): 1643-1660
doi: 10.1137/110833051 |
[15] |
Fu X LüQ. Stabilization of the weakly coupled wave-plate system with one internal damping. Vietnam J Math, 2021, 49: 767-786
doi: 10.1007/s10013-021-00493-9 |
[16] | Guglielmi R. Indirect stabilization of hyperbolic systems through resolvent estimates. Evol Equ Control Theory, 2017, 6(1): 59-75 |
[17] |
Hajej A, Hajjej Z, Tebou L. Indirect stabilization of weakly coupled Kirchhoff plate and wave equations with frictional damping. J Math Anal Appl, 2019, 474(1): 290-308
doi: 10.1016/j.jmaa.2019.01.046 |
[18] | Han Z J, Liu Z. Regularity and stability of coupled plate equations with indirect structural or Kelvin-Voigt damping. ESAIM Control Optim Calc Var, 2019, 25: Article number 51 |
[19] |
Hao J, Liu Z. Stability of an abstract system of coupled hyperbolic and parabolic equations. Z Angew Math Phys, 2013, 64: 1145-1159
doi: 10.1007/s00033-012-0274-0 |
[20] |
Hao J, Liu Z, Yong J. Regularity analysis for an abstract system of coupled hyperbolic and parabolic equations. J Differential Equations, 2015, 259(9): 4763-4798
doi: 10.1016/j.jde.2015.06.010 |
[21] |
Huang F. On the mathematical model for linear elastic systems with analytic damping. SIAM J Control Optim, 1988, 26(3): 714-724
doi: 10.1137/0326041 |
[22] | Huang F, Liu K. Holomorphic property and exponential stability of the semigroup associated with linear elastic systems with damping. Ann Differ Equ, 1988, 4: 411-424 |
[23] |
Liu Z, Rao B. Frequency domain approach for the polynomial stability of a system of partially damped wave equations. J Math Anal Appl, 2007, 335(2): 860-881
doi: 10.1016/j.jmaa.2007.02.021 |
[24] |
Liu Z, Rao B. Characterization of polynomial decay rate for the solution of linear evolution equation. Z Angew Math Phys, 2005, 56: 630-644
doi: 10.1007/s00033-004-3073-4 |
[25] |
Liu Z, Rao B, Zhang Q. Polynomial stability of the Rao-Nakra beam with a single internal viscous damping. J Differential Equations, 2020, 269(7): 6125-6162
doi: 10.1016/j.jde.2020.04.030 |
[26] |
Liu Z, Zhang Q. Stability and regularity of solution to the Timoshenko beam equation with local Kelvin-Voigt damping. SIAM J Control and Optim, 2018, 56(6): 3919-3947
doi: 10.1137/17M1146506 |
[27] | Liu Z, Zheng S. Semigroups Associated with Dissipative Systems. Boca Raton: Chapman & Hall/CRC, 1999 |
[28] |
Loreti P, Rao B. Optimal energy decay rate for partially damped systems by spectral compensation. SIAM J Control Optim, 2006, 45(5): 1612-1632
doi: 10.1137/S0363012903437319 |
[29] | Mansouri S. Boundary stabilization of coupled plate equations. Palest J Math, 2013, 2: 233-242 |
[30] | Oquendo H P, Suárez F M S. Exact decay rates for coupled plates with partial fractional damping. Z Angew Math Phys, 2019, 70: Article number 88 |
[31] | Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1983 |
[32] | Rao B. On the sensitivity of the transmission of boundary dissipation for strongly coupled and indirectly damped systems of wave equations. Z Angew Math Phys, 2019, 70: Article number 75 |
[33] |
Russell D L. A general framework for the study of indirect damping mechanisms in elastic systems. J Math Anal Appl, 1993, 173(2): 339-358
doi: 10.1006/jmaa.1993.1071 |
[34] |
Tebou L. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Math Control Relat Fields, 2012, 2(1): 45-60
doi: 10.3934/mcrf.2012.2.45 |
[35] |
Yim J H, Jang B Z. An analytical method for prediction of the damping in symmetric balanced laminated composites. Polymer Composites, 1999, 20: 192-199
doi: 10.1002/pc.v20:2 |
[36] |
Zhang X, Zuazua E. Decay of solutions of the system of thermoelasticity of type III. Commun Contemp Math, 2003, 5: 25-83
doi: 10.1142/S0219199703000896 |
[37] |
Zhang X, Zuazua E. Long-Time behavior of a coupled heat-wave system arising in fluid-structure interaction. Arch Rational Mech Anal, 2007, 184: 49-120
doi: 10.1007/s00205-006-0020-x |
[38] | Zhu X. Stabilization of the weakly coupled plate equations with a locally distributed damping. Advances in Difference Equations, 2020, 2020: Article number 230 |
[1] | 刘甲玉,魏含玉,张燕,夏铁成,王惠. 阿尔法螺旋蛋白中三分量四阶非线性Schrödinger系统孤子解及其非线性动力行为研究[J]. 数学物理学报, 2022, 42(6): 1873-1885. |
[2] | 童雅阁,吴开谡. 非光滑边界条件下具时滞的Rotenberg方程主算子的谱分析[J]. 数学物理学报, 2022, 42(5): 1320-1331. |
[3] | 王胜华,马江山. 一类具结构化的细菌种群模型中出现的迁移算子的谱分析[J]. 数学物理学报, 2020, 40(4): 1083-1094. |
[4] | 杨晓敏,邱志鹏,丁玲. 一类共位群内捕食模型的复杂动力学性态[J]. 数学物理学报, 2019, 39(4): 963-970. |
[5] | 王胜华, 程国飞. 具结构化的细菌种群模型解的渐近行为[J]. 数学物理学报, 2018, 38(1): 156-167. |
[6] | 王胜华, 吴红星. Rotenberg模型中一类迁移算子的谱分析[J]. 数学物理学报, 2016, 36(5): 821-831. |
[7] | 王胜华, 贾善德, 袁邓彬. 种群细胞中一类迁移算子的谱分析[J]. 数学物理学报, 2014, 34(6): 1592-1598. |
[8] | 王胜华, 程国飞. 一类增生扩散型种群细胞中迁移方程的谱问题[J]. 数学物理学报, 2013, 33(1): 71-77. |
[9] | 章春国. 具有局部记忆阻尼的非均质Timoshenko梁的稳定性[J]. 数学物理学报, 2012, 32(1): 186-200. |
[10] | 王雷, 许跟起. 一类时滞方程的谱与解展开[J]. 数学物理学报, 2009, 29(4): 843-857. |
|