[1] |
Tse C, Bernardo M. Complex behavior in switching power converter. Proceeding of IEEE, 2002, 90(5): 768-781
doi: 10.1109/JPROC.2002.1015006
|
[2] |
Kember S, Babitsky V. Excitation of vibro-impact systems by periodic impulses. J Sound Vib, 1999, 227(2): 427-447
doi: 10.1006/jsvi.1999.2353
|
[3] |
黄立宏, 郭振远, 王佳伏. 右端不连续微分方程理论与应用. 北京: 科学出版社, 2011
|
|
Huang L H, Guo Z Y, Wang F J. Theory and Application of Differential Equations with Discontinuous Right-Hand Sides. Beijing: Science Press, 2011
|
[4] |
Zou Y, Kupper T, Beyn W. Generalized Hopf bifurcation for planar Filippov systems continuous at the origin. J Nonlinear Sci, 2006, 16(2): 159-177
doi: 10.1007/s00332-005-0606-8
|
[5] |
Simpson D, Meiss J. Andronov-Hopf bifurcation in planar, piecewise-smooth, continuous flows. Phys Lett A, 2007, 371(3): 213-220
doi: 10.1016/j.physleta.2007.06.046
|
[6] |
Virgin L, Begley C. Grazing bifurcations and basins of attraction in an impact-friction oscillator. Physica D, 1999, 130: 43-57
doi: 10.1016/S0167-2789(99)00016-0
|
[7] |
Kukučka P. Melnikov method for discontinuous planar systems. Nonlinear Anal, 2007, 66: 2698-2719
doi: 10.1016/j.na.2006.04.001
|
[8] |
Li L, Huang L. Concurrent homoclinic bifurcation and Hopf bifurcation for a class of planar Filippov systems. J Math Anal Appl, 2014, 411: 83-94
doi: 10.1016/j.jmaa.2013.09.025
|
[9] |
Liu X, Han M A. Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems. Int J Bifurc Chaos, 2010, 20(5): 1379-1390
doi: 10.1142/S021812741002654X
|
[10] |
Llibre J, Lopes B, Moraes J. Limit cycles for a class of continuous and discontinuous cubic polynomial differential systems. Qual Theory Dyn Syst, 2014, 13: 129-148
doi: 10.1007/s12346-014-0109-9
|
[11] |
Li F, Yu P, Tian Y, Liu Y. Center and isochronous center conditions for switching systems associated with elementary singular points. Commun Nonlinear Sci Numer Simul, 2015, 28: 81-97
doi: 10.1016/j.cnsns.2015.04.005
|
[12] |
Guo L, Yu P, Chen Y. Bifurcation analysis on a class of $Z_2$-equivariant cubic switching systems showing eighteen limit cycles. J Differential Equations, 2019, 266: 1221-1244
doi: 10.1016/j.jde.2018.07.071
|
[13] |
Liang F, Han M. Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems. Chaos Solitons Fractals, 2012, 45: 454-464
doi: 10.1016/j.chaos.2011.09.013
|
[14] |
Liang F, Han M, Zhang X. Bifurcation of limit cycles from generalized homoclinic loops in planar piecewise smooth systems. J Differential Equations, 2013, 255: 4403-4436
doi: 10.1016/j.jde.2013.08.013
|
[15] |
Xiong Y, Han M. Limit cycles appearing from a generalized heteroclinic loop with a cusp and a nilpotent saddle. J Differential Equations, 2021, 303: 575-607
doi: 10.1016/j.jde.2021.09.031
|
[16] |
Han M, Sheng L. Bifurcation of limit cycles in piecewise smooth systems via Melnikov function. J Appl Anal Comput, 2015, 5: 809-815
|