数学物理学报 ›› 2023, Vol. 43 ›› Issue (6): 1667-1680.

• • 上一篇    下一篇

具有尖点环的非光滑微分系统的极限环分支

杨纪华*(),马亮   

  1. 宁夏师范学院数学与计算机科学学院 宁夏固原 756000
  • 收稿日期:2022-11-22 修回日期:2023-05-17 出版日期:2023-12-26 发布日期:2023-11-16
  • 通讯作者: *杨纪华,E-mail: jihua1113@163.com
  • 基金资助:
    国家自然科学基金(12161069);宁夏自然科学基金(2022AAC05044);宁夏高等学校一流学科建设(教育学学科)(NXYLXK2021B10)

Limit Cycle Bifurcations of a Non-smooth Differential System with a Cuspidal Loop

Yang Jihua*(),Ma Liang   

  1. School of Mathematics and Computer Science, Ningxia Normal University, Ningxia Guyuan 756000
  • Received:2022-11-22 Revised:2023-05-17 Online:2023-12-26 Published:2023-11-16
  • Supported by:
    NSFC(12161069);Natural Science Foundation of Ningxia(2022AAC05044);Construction of First-class Disciplines of Higher Education of Ningxia (pedagogy)(NXYLXK2021B10)

摘要:

研究具有尖点环的非光滑微分系统在 $n$ 次多项式非光滑扰动下的极限环分支问题. 首先把扰动微分系统的一阶 Melnikov 函数 $M(h)$ 表示成几个具有多项式系数的生成积分的线性组合, 并用数学归纳法证明这些多项式的系数是相互独立的常数. 然后应用 $M(h)$ 的渐近展式得到从原点和尖点环附近分支出极限环个数的下界.

关键词: 极限环, Melnikov 函数, 尖点环, 渐近展式

Abstract:

This paper studies the limit cycle bifurcation problem of a non-smooth differential system with a cuspidal loop under non-smooth perturbation of polynomials of degree $n$. Firstly, the first order Melnikov function $M(h)$ of the perturbed differential system is expressed as a linear combination of several generating integrals with polynomial coefficients, and the independence of coefficients of these polynomials is proved by mathematical induction. Then the lower bounds of the number of limit cycles bifurcating the origin and cuspidal loop are obtained by using the asymptotic expansions of $M(h)$.

Key words: Limit cycle, Melnikov function, Cuspidal loop, Asymptotic expansion

中图分类号: 

  • O175.12