数学物理学报 ›› 2023, Vol. 43 ›› Issue (5): 1595-1606.

• • 上一篇    下一篇

具有媒体报道的 SVIR 传染病模型的生存性分析

李丹1,魏凤英2,*(),毛学荣3   

  1. 1福州大学数学与统计学院 福州 350116
    2福州大学运筹学与控制论福建省高校重点实验室 福州 350116
    3思克莱德大学数学与统计系 格拉斯哥 G1 1XH
  • 收稿日期:2022-04-22 修回日期:2022-10-31 出版日期:2023-10-26 发布日期:2023-08-09
  • 通讯作者: 魏凤英 E-mail:weifengying@fzu.edu.cn
  • 基金资助:
    国家自然科学基金-国际(地区)合作与交流项目(61911530398);福建省科技厅项目(2021L3018);福建省自然科学基金(2021J01621);英国皇家学会(WM160014);英国皇家学会(英国皇家学会沃尔夫森研究优异奖);英国皇家学会和牛顿基金(NA160317);英国皇家学会和牛顿基金(皇家学会-牛顿高级奖学金);工程和物理科学研究委员会(EP/K503174/1)

Survival Analysis of an SVIR Epidemic Model with Media Coverage

Li Dan1,Wei Fengying2,*(),Mao Xuerong3   

  1. 1School of Mathematics and Statistics, Fuzhou University, Fuzhou 350116
    2Key Laboratory of Operations Research and Control of Universities in Fujian, Fuzhou University, Fuzhou 350116
    3Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK
  • Received:2022-04-22 Revised:2022-10-31 Online:2023-10-26 Published:2023-08-09
  • Contact: Fengying Wei E-mail:weifengying@fzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(61911530398);Special Projects of the Central Government Guiding Local Science, Technology Development(2021L3018);Natural Science Foundation of Fujian Province of China(2021J01621);Royal Society, UK(WM160014);Royal Society, UK (Royal Society Wolfson Research Merit Award);Royal Society and the Newton Fund, UK(NA160317);Royal Society and the Newton Fund, UK (Royal Society-Newton Advanced Fellowship);EPSRC, the Engineering and Physical Sciences Research Council(EP/K503174/1)

摘要:

该文研究了具有Logistic增长和媒体报道的饱和发生率的随机SVIR模型. 为了研究模型的动力学性质, 首先证明了随机模型全局正解的存在唯一性, 其次通过构造合适的李雅普诺夫函数, 探究疾病持久和灭绝的充分性条件. 研究表明: 当${R}_{0}^{s}>1$时, 疾病长时间持续存在. 当${R}_{0}^{e}<1$时, 疾病在流行一段时间后灭绝. 最后, 通过数值模拟验证了以上结论.

关键词: 传染病模型, 疫苗, 媒体报道, 持久性与灭绝性, 平稳分布

Abstract:

We consider the long-term properties of a stochastic SVIR epidemic model with media coverage and the logistic growth in this paper. We firstly derive the fitness of a unique global positive solution. Then we construct appropriate Lyapunov functions and obtain the existence of ergodic stationary distribution when ${R}_{0}^{s}>1$ is valid, and also derive sufficient conditions for persistence in the mean. Moreover, the exponential extinction to the density of the infected is figured out when ${R}_{0}^{e}<1$ holds.

Key words: Epidemic model, Vaccination, Media coverage, Persistence and extinction, Stationary distribution

中图分类号: 

  • O175.13