[1] |
Bi C J, Liu M M. A discontinuous finite volume element method for second-order elliptic problems. Numerical Methods for Partial Differential Equations, 2012, 28(2): 425-440
doi: 10.1002/num.v28.2
|
[2] |
Cahn J W, Hilliard J E. Free energy of a nonuniform system I: Interfacial free energy. The Journal of Chemical Physics, 1958, 28(2): 258-267
doi: 10.1063/1.1744102
|
[3] |
Chou H S, Ye X. Unified analysis of finite volume methods for second order elliptic problems. Siam Journal on Numerical Analysis, 2007, 45: 1639-1653
doi: 10.1137/050643994
|
[4] |
Feng X, Karakashian O A. Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Mathematics of computation, 2007, 76(259): 1093-1117
doi: 10.1090/S0025-5718-07-01985-0
|
[5] |
Feng X B, Prohl A. Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Mathematics of Computation, 2004, 73(246):541-567
doi: 10.1090/mcom/2004-73-246
|
[6] |
Jia Z. Discovering phase field models from image data with the pseudo-spectral physics informed neural networks. Communications on Applied Mathematics and Computation, 2021, 3(2): 357-369
doi: 10.1007/s42967-020-00105-2
|
[7] |
Kumar S, Ruiz-Baier R. Equal order discontinuous finite volume element methods for the Stokes problem. Journal of Scientific Computing, 2015, 65(3): 956-978
doi: 10.1007/s10915-015-9993-7
|
[8] |
Li R, Gao Y L, Chen J, et al. Discontinuous finite volume element method for a coupled Navier-Stokes-Cahn-Hilliard phase field model. Advances in Computational Mathematics, 2020, 46(2): 1-35
doi: 10.1007/s10444-020-09758-2
|
[9] |
Liu H L, Yin P M. Unconditionally energy stable discontinuous Galerkin schemes for the Cahn-Hilliard equation. Journal of Computational and Applied Mathematics, 2021, 390: 113375
doi: 10.1016/j.cam.2020.113375
|
[10] |
Shen J, Yang X F. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems, 2010, 28: 1669-1691
doi: 10.3934/dcds.2010.28.1669
|
[11] |
Shen J, Yang X F, Yu H J. Efficient energy stable numerical schemes for a phase field moving contact line model. Journal of Computational Physics, 2015, 284: 617-630
doi: 10.1016/j.jcp.2014.12.046
|
[12] |
Ye X. A new discontinuous finite volume method for elliptic problems. SIAM Journal on Numerical Analysis, 2004, 42(3): 1062-1072
doi: 10.1137/S0036142902417042
|
[13] |
叶兴德, 程晓良. Cahn-Hilliard 方程的拟谱逼近. 数学物理学报, 2002, 22A(2): 270-280
|
|
Ye X D, Cheng X L. Legendre collocation approximation for Cahn-Hilliard equation. Acta Mathematica Scientia, 2002, 22A(2): 270-280
|
[14] |
Zhang Z R, Qiao Z H. An adaptive time-stepping strategy for the Cahn-Hilliard equation. Communications in Computational Physics, 2012, 11(4): 1261-1278
doi: 10.4208/cicp.300810.140411s
|