[1] |
Barbu V, Korman P. Analysis and Control of Nonlinear Infinite Dimensional Systems, Vol. 190. Amsterdam:Elsevier, 1993
|
[2] |
Chen T, Francis B A. Optimal Sampled-Data Control Systems. London: Springer-Verlag, 1995
|
[3] |
Duan Y L, Wang L J, Zhang C. Minimal time impulse control of an evolution equation. Journal of Optimization Theory and Applications, 2019, 183(3): 902-919
doi: 10.1007/s10957-019-01552-5
|
[4] |
Fattorini H O. Infinite Dimensional Linear Control Systems:the Time Optimal and Norm Optimal Problems. Amsterdam: Elsevier, 2005
|
[5] |
Fenchel W. On conjugate convex functions. Canadian Journal of Mathematics, 1949, 1(1): 73-77
doi: 10.4153/CJM-1949-007-x
|
[6] |
Kunisch K, Wang L J. Time optimal controls of the linear fitzhugh-nagumo equation with pointwise control constraints. Journal of Mathematical Analysis and Applications, 2012, 395(1): 114-130
pmid: 23576818
|
[7] |
Kunisch K, Wang L J. Time optimal control of the heat equation with pointwise control constraints. ESAIM: Control, Optimisation and Calculus of Variations, 2013, 19(2): 460-485
doi: 10.1051/cocv/2012017
|
[8] |
Lü Q, Wang G S. On the existence of time optimal controls with constraints of the rectangular type for heat equations. SIAM Journal on Control and Optimization, 2011, 49(3): 1124-1149
doi: 10.1137/10081277X
|
[9] |
Li X J, Yong J M. Optimal Control Theory for Infinite Dimensional Systems. Boston: Birkhäuser, 1995
|
[10] |
Lions J L. Remarks on approximate controllability. Journal d'Analyse Mathématique, 1992, 59(1): 103-116
doi: 10.1007/BF02790220
|
[11] |
Phung K D, Wang G S, Xu Y S. Impulse output rapid stabilization for heat equations. Journal of Differential Equations, 2016, 263(18): 5012-5041
doi: 10.1016/j.jde.2017.06.008
|
[12] |
Phung K D, Wang G S, Zhang X. On the existence of time optimal controls for linear evolution equations. Discrete and Continuous Dynamical Systems - Series B, 2012, 4(4): 925-941
|
[13] |
Trélat E, Wang G S, Xu Y S. Characterization by observability inequalities of controllability and stabilization properties. Pure and Applied Analysis, 2019, 2(1): 93-122
doi: 10.2140/paa
|
[14] |
Tré E, Wang L J, Zhang Y B. Impulse and sampled-data optimal control of heat equations, and error estimates. SIAM Journal on Control and Optimization, 2015, 54(5): 2787-2819
doi: 10.1137/15M1040670
|
[15] |
Wang G S. The existence of time optimal control of semilinear parabolic equations. Systems & Control Letters, 2004, 53(3/4): 171-175
doi: 10.1016/j.sysconle.2004.04.002
|
[16] |
Wang G S. $L^{\infty}$-null controllability for the heat equation and its consequences for the time optimal control problem. SIAM Journal on Control and Optimization, 2008, 47(4): 1701-1720
doi: 10.1137/060678191
|
[17] |
Wang G S, Wang M, Zhang C, Zhang Y B. Observable set, observability, interpolation inequality and spectral inequality for the heat equation in $\mathbb{R} ^{n}$. Journal de Mathématiques Pures et Appliquées, 2019, 126: 144-194
doi: 10.1016/j.matpur.2019.04.009
|
[18] |
Wang G S, Wang M, Zhang Y B. Observability and unique continuation inequalities for the schr{ö}dinger equation. Journal of the European Mathematical Society, 2019, 21(11): 3513-3572
doi: 10.4171/JEMS
|
[19] |
Wang G S, Yang D H, Zhang Y B. Time optimal sampled-data controls for heat equations. Comptes Rendus Mathematique, 2017, 355(12): 1252-1290
doi: 10.1016/j.crma.2017.11.006
|
[20] |
Wang L J. Minimal time impulse control problem of semilinear heat equation. Journal of Optimization Theory and Applications, 2021, 188(13): 805-822
doi: 10.1007/s10957-020-01807-6
|
[21] |
Wang L J, Wang G S. The optimal time control of a phase-field system. SIAM Journal on Control and Optimization, 2003, 42(4): 1483-1508
doi: 10.1137/S0363012902405455
|