数学物理学报 ›› 2023, Vol. 43 ›› Issue (4): 1221-1243.
收稿日期:
2022-06-22
修回日期:
2023-02-14
出版日期:
2023-08-26
发布日期:
2023-07-03
通讯作者:
毛明志
E-mail:1202010933@cug.edu.cn;mingzhi-mao@163.com
作者简介:
何旭阳,E-mail: 基金资助:
He Xuyang(),Mao Mingzhi*(),Zhang Tengfei
Received:
2022-06-22
Revised:
2023-02-14
Online:
2023-08-26
Published:
2023-07-03
Contact:
Mingzhi Mao
E-mail:1202010933@cug.edu.cn;mingzhi-mao@163.com
Supported by:
摘要:
该文考虑一类具有泊松跳的脉冲中立型随机泛函微分方程温和解的存在唯一性以及指数稳定性. 利用逐次逼近和Picard迭代方法, 证明了在Hilbert空间中温和解的存在性; 其次, 通过Banach不动点原理, 给出了均方指数稳定和几乎必然指数稳定的充分条件.
中图分类号:
何旭阳,毛明志,张腾飞. 一类具有泊松跳的脉冲中立型随机泛函微分方程的存在性及稳定性研究[J]. 数学物理学报, 2023, 43(4): 1221-1243.
He Xuyang,Mao Mingzhi,Zhang Tengfei. Existence and Stability of a Class of Impulsive Neutral Stochastic Functional Differential Equations with Poisson Jump[J]. Acta mathematica scientia,Series A, 2023, 43(4): 1221-1243.
[1] | Hale J K, Lunel S M V. Introduction to Functional-Differential Equations. Applied Mathematical Sciences, New York: Springer-Verlag, 1993 |
[2] |
Liu K. The fundamental solution and its role in the optimal control of infinite dimensional neutral systems. Appl Math Optim, 2009, 60(1): 1-38
doi: 10.1007/s00245-009-9065-1 |
[3] |
Wu S J, Meng X Z. Boundedness of nonlinear differential systems with impulsive effect on random moments. Acta Math Appl Sin Engl Ser, 2004, 20(1): 147-154
doi: 10.1007/s10255-004-0157-z |
[4] |
Wu F K, Mao X R, Szpruch L. Almost sure exponential stability of numerical solutions for stochastic delay differential equations. Numer Math, 2010, 115(4): 681-697
doi: 10.1007/s00211-010-0294-7 |
[5] | 沈轶, 张玉民, 廖晓昕. 中立型随机泛函微分方程的稳定性. 数学物理学报, 2005, 25(3): 323-330 |
Shen Y, Zhang Y M, Liao X X. Stability for neutral stochastic functional differential equations. Acta Math Sci, 2005, 25(3): 323-330 | |
[6] | 崔静, 梁秋菊, 毕娜娜. 分数布朗运动驱动的带脉冲的中立性随机泛函微分方程的渐近稳定. 数学物理学报, 2019, 39(3): 570-581 |
Cui J, Liang Q J, Bi N N. Asymptotic stability of impulsive neutral stochastic functional differential equation driven by fractional Brownian motion. Acta Math Sci, 2019, 39(3): 570-581 | |
[7] |
Song Y, Zeng Z. Razumikhin-type theorems on th moment boundedness of neutral stochastic functional differential equations with Makovian switching. J Franklin Inst B, 2018, 355(5): 8296-8312
doi: 10.1016/j.jfranklin.2018.09.019 |
[8] |
Chang M. On Razumikhin-type stability conditions for stochastic functional differential equations. Math Modelling, 1984, 5(5): 299-307
doi: 10.1016/0270-0255(84)90007-1 |
[9] | 沈轶, 廖晓昕. 随机中立型泛函微分方程指数稳定的Razumikhin型定理. 科学通报, 1998, 21: 2272-2275 |
Shen Y, Liao X X. The Razumikhin type theorem for exponential stability of stochastic neutral type functional differential equations. Chinese Science Bulletin, 1998, 21: 2272-2275 | |
[10] | Ren Y, Xia N. Existence, uniqueness and stability of the solutions to neutral stochastic functional differential equations with infinite delay. Appl Math Comput, 2008, 210(1): 72-79 |
[11] | Yang Z, Xu D. Stability analysis and design of impulsive control systems with time delay. IEEE Trans Automat Control, 2007, 52(8): 48-54 |
[12] | Guo Y, Zhu Q, Wang F. Stability analysis of impulsive stochastic functional differential equations. Commun Nonlinear Sci Numer Simul, 2020, 82(C): 5-13 |
[13] |
Zhao X. Mean square Hyers-Ulam stability of stochastic differential equations driven by Brownian motion. Adv Difference Equ, 2016, 2016(1): 271
doi: 10.1186/s13662-016-1002-4 |
[14] |
Li S, Shu L X, Shu X B, Xu F. Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays. Stochastic, 2019, 91(6): 857-872
doi: 10.1080/17442508.2018.1551400 |
[15] | Ferhat M, Blouhi T. Existence and uniqueness results for systems of impulsive functional stochastic differential equations driven by fractional Brownian motion with multiple delay. Topol Methods Nonlinear Anal, 2018, 52: 449-476 |
[16] | Wu F, Yin G, Mei H. Stochastic functional differential equations with infinite delay: existence and uniqueness of solutions, solution maps, Markov properties, and ergodicity. J Diff Equ, 2017, 62(3): 1226-1252 |
[17] | Banupriya K, Anguraj A. Successive approximation of neutral functional impulsive stochastic differential equations with Poisson jumps. Dyn Contin Discrete Impuls Syst Ser B Appl and Algorithms, 2021, 28: 215-229 |
[18] |
Boufoussi B, Hajji S. Successive approximation of neutral functional stochastic differential equations in Hilbert spaces. Ann Math Blaise Pascal, 2010, 17(1): 183-197
doi: 10.5802/ambp.282 |
[19] |
Chen G, van Gaans O, Lunel S V. Existence and exponential stability of a class of impulsive neutral stochastic partial differential equations with delays and Poisson jumps. Statist Probab Lett, 2018, 141: 7-18
doi: 10.1016/j.spl.2018.05.017 |
[20] |
Deng S F, Shu X B, Mao J Z. Existence and exponential stability for impulsive neutral stochastic functional differential equations driven by fBm with noncompact semigroup via Mönch fixed point. J Math Anal Appl, 2018, 467(1): 398-420
doi: 10.1016/j.jmaa.2018.07.002 |
[21] |
Guo Y C, Chen M Q, Shu X B, Xu F. The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm. Stoch Anal Appl, 2021, 39(4): 643-666
doi: 10.1080/07362994.2020.1824677 |
[22] |
Faizullah F, Zhu Q, Ullah R. The existence-uniqueness and exponential estimate of solutions for stochastic functional differential equations driven by G-Brownian motion. Math Methods Appl Sci, 2021, 44: 1639-1650
doi: 10.1002/mma.v44.2 |
[23] |
Xiao G, Wang J, O'Regan D. Existence and stability of solutions to neutral conformable stochastic functional differential equations. Qual Theory Dyn Syst, 2022, 21(1): 7-22
doi: 10.1007/s12346-021-00538-x |
[24] | Tan J G, Tan Y H, Guo Y F, Feng J F. Almost sure exponential stability of numerical solutions for stochastic delay Hopfield neural networks with jumps. Phys A: Statist Mech Appl, 2020, 545: 37-82 |
[25] | Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl Math Sci vol. New York: Springer Verlag, 1983 |
[26] | Da Prato G, Zabczyk J. Stochastic Equations in Infinite Dimensions. Cambridge: Cambridge University Press, 1992, 45 |
[27] |
Luo Q, Mao X, Shen Y. New criteria on exponential stability of neutral stochastic differential delay equations. Syst Control Lett, 2006, 55(10): 826-834
doi: 10.1016/j.sysconle.2006.04.005 |
[28] | Li R, Pang W, Leung P. Exponential stability of numerical solutions to stochastic delay Hopfield neural networks. Appl Math Comput, 2009, 73(4): 920-926 |
[29] |
Rathinasamy A. The split-step $\theta $-methods for stochastic delay Hopfield neural networks. Appl Math Model, 2021, 36: 3477-3485
doi: 10.1016/j.apm.2011.10.020 |
[30] |
Jiang F, Shen Y. Stability in the numerical simulation of stochastic delayed Hopfield neural networks. Neural Comput Appl, 2013, 22(7/8): 1493-1498
doi: 10.1007/s00521-012-0935-0 |
[31] | Liu L, Zhu Q. Almost sure exponential of numerical solutions to stochastic delay Hopfield neural networks. Appl Math Comput, 2015, 266: 698-712 |
[1] | 姚绍文,李文洁,程志波. 三阶非线性微分方程周期解的非退化和存在唯一性[J]. 数学物理学报, 2022, 42(2): 454-462. |
[2] | 范东霞,赵东霞,史娜,王婷婷. 一类扩散波方程的PDP反馈控制和稳定性分析[J]. 数学物理学报, 2021, 41(4): 1088-1096. |
[3] | 黄星寿,罗日才,王五生. 基于Gronwall积分不等式的比例时滞神经网络稳定性分析[J]. 数学物理学报, 2020, 40(3): 824-832. |
[4] | 贠永震,苏有慧,胡卫敏. 一类具有p-Laplacian算子的分数阶微分方程反周期边值问题解的存在唯一性[J]. 数学物理学报, 2018, 38(6): 1162-1172. |
[5] | 熊君, 李俊民, 何超. 一阶双曲型偏微分方程的模糊边界控制[J]. 数学物理学报, 2017, 37(3): 469-477. |
[6] | 张丽萍, 刘东毅, 张国山. 带有内部扰动的Timoshenko梁系统的指数稳定性[J]. 数学物理学报, 2017, 37(1): 185-198. |
[7] | 赵伟霞. 剥脱现象中的某个自由边值问题的整体经典解[J]. 数学物理学报, 2013, 33(6): 1001-1012. |
[8] | 张雨田, 罗琦. 具反应扩散项和Neumann边界条件的脉冲变时滞细胞神经网络的全局指数稳定性[J]. 数学物理学报, 2013, 33(4): 777-786. |
[9] | 章春国. 具有局部记忆阻尼的非均质Timoshenko梁的稳定性[J]. 数学物理学报, 2012, 32(1): 186-200. |
[10] | 金山, 鲁世平. 一类多项式系统极限环的唯一性与分支[J]. 数学物理学报, 2011, 31(6): 1669-1673. |
[11] | 陈淑红, 郭柏灵. 费米子气体附近BCS-BEC跨越的Ginzburg-Landau方程组整体解的存在性[J]. 数学物理学报, 2011, 31(5): 1359-1368. |
[12] | 张若军, 王林山. 具有分布时滞的细胞神经网络的概周期解[J]. 数学物理学报, 2011, 31(2): 422-429. |
[13] | 翁爱治, 孙继涛. 具有脉冲的Dirichlet边值问题的Lyapunov不等式及其应用[J]. 数学物理学报, 2011, 31(1): 82-91. |
[14] | 张诚坚, 吕鹏. 空间中的时滞积分微分方程数值方法及其牛顿迭代解的存在唯一性[J]. 数学物理学报, 2010, 30(2): 456-464. |
[15] | 袁洪君, 佟丽宁. 带有非线性源的以有限Radon测度为初值的拟线性双曲方程的BV解[J]. 数学物理学报, 2010, 30(1): 54-70. |
|