数学物理学报 ›› 2023, Vol. 43 ›› Issue (4): 1197-1120.

• • 上一篇    下一篇

大振幅浅水波模型的柯西问题研究

蔡森林(),周寿明*(),陈容   

  1. 重庆师范大学数学科学学院 重庆市 401331
  • 收稿日期:2022-07-08 修回日期:2023-02-11 出版日期:2023-08-26 发布日期:2023-07-03
  • 通讯作者: 周寿明 E-mail:137306468@qq.com;zhoushouming76@163.com
  • 作者简介:蔡森林, E-mail: 137306468@qq.com
  • 基金资助:
    国家自然科学基金(11971082);重庆市自然科学基金项目(csts2020jcyj-jqX0022);重庆英才青年拔尖人才(cstc2021ycjh-bgzxm0130);重庆市教育委员会科学技术研究项目(KJZD-M202200501);重庆市教育委员会科学技术研究项目(KJZD-M201900501);重庆市教育委员会科学技术研究项目(KJQN202000518);重庆市留学人员回国创业创新支持计划(cx2022029)

On the Cauchy Problem for a Shallow Water Regime of Waves with Large Amplitude

Cai Senlin(),Zhou Shouming*(),Chen Rong   

  1. College of Mathematics Science, Chongqing Normal University, Chongqing 401331
  • Received:2022-07-08 Revised:2023-02-11 Online:2023-08-26 Published:2023-07-03
  • Contact: Shouming Zhou E-mail:137306468@qq.com;zhoushouming76@163.com
  • Supported by:
    National Natural Science Foundation of China(11971082);Natural Science Foundation of Chongqing(csts2020jcyj-jqX0022);Chongqing's Youth Talent Support Program(cstc2021ycjh-bgzxm0130);Science and Technology Research Program of Chongqing Municipal Educational Commission(KJZD-M202200501);Science and Technology Research Program of Chongqing Municipal Educational Commission(KJZD-M201900501);Science and Technology Research Program of Chongqing Municipal Educational Commission(KJQN202000518);Entrepreneurship and Innovation Support Plan of Chongqing for Returned Overseas Scholars(cx2022029)

摘要:

该文考虑单参数族浅水波方程的柯西问题, 该模型是在参数$\delta\ll 1, \varepsilon={\cal O}(\sqrt{\delta})$的范围内联合质量守恒方程对欧拉方程进行逼近展开得到的. 首先考虑大振幅浅水波方程的解在Sobolev空间$H^s(\mathbb{R} ), s>3/2$中的局部适定性, 这意味着初值到解的映射是存在且唯一的且连续依赖于初值. 该文还进一步证明了初值到解映射的这种依赖关系在此Sobolev空间中是非一致连续的, 但这种依赖关系在Sobolev 空间$H^{r}(0 \leq r<s)$中是Hölder 连续的, 并且Hölder指数$\gamma$依赖于$s$$r$, 同时分析了该模型只会以波裂的形式发 生爆破. 最后, 该文还研究了当初值属于加权空间$L_{\phi}^p:= L^{p}(\mathbb{R},\phi^{p}{\rm d}x)$时, 方程的强 解在空间变量趋于无穷远时的渐近行为.

关键词: 浅水波, 局部适定性, 非一致连续性, H?lder连续, 爆破, 持续性

Abstract:

In this paper, we Considered herein the Cauchy problem for a one-parameter family shallow water wave equation which approximate the Euler's equations of motion and the equation of mass conservation in the regime of $\delta\ll 1, \varepsilon={\cal O}(\sqrt{\delta})$. We first establish that this surface equation for shallow water waves of large amplitude is local well-posedness in Sobolev spaces $ H^s(\mathbb{R} )$ with $s>\frac{3}{2}$, which implies that the data-to-solution map is existence, uniqueness and continuous dependence on their initial data, we further show that this dependence is not uniformly continuous in these Sobolev spaces. Moreover, we obtain that the data-to-solution map for this shallow water wave equation is Hölder continuous in the sense of $H^{r}(\mathbb{R} )$-topology for all $0\leq r, and the Hölder exponent $\gamma$ depending on $s$ and $r$. Then, the precise blow-up mechanism for the strong solutions is determined in the Sobolev space $H^{s}$ with $s > 3/2$. In addition, we also investigate the asymptotic behaviors of the strong solutions to this equation at infinity within its lifespan provided the initial data lie in weighted $L_{\phi}^p:= L^{p}(\mathbb{R},\phi^{p}{\rm d}x)$ spaces.

Key words: Shallow water waves, Local well-posedness, Nonuniform continuity, H?lder continuity, Blow up, Persistence property.

中图分类号: 

  • O175.29