[1] |
Aliev A B, Farhadova Y M. Existence of global attractors for the coupled system of suspension bridge equations. Azerbaijan Journal of Mathematics, 2021, 11(2): 105-124
|
[2] |
Barbu V. Nonlinear Semigroups and Differential Equations in Banach Spaces. Bucuresti: Editura Academiei, 1976
|
[3] |
Bucci F, Chueshov I, Lasiecka I. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure and Applied Analysis, 2007, 6: 113-140
doi: 10.3934/cpaa.2007.6.113
|
[4] |
Bucci F, Chueshov I. Long time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Arxiv preprint arxiv: 0806.4500, 2008
|
[5] |
Chen B Y, Zhao C X, Zhong C K. The global attractor for the wave equation with nonlocal strong damping. Discrete and Continuous Dynamical Systems-B, 2021, 26(12): 6207-6228
doi: 10.3934/dcdsb.2021015
|
[6] |
Chueshov I, Eller M, Lasiecka I. On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Commun PDE, 2002, 27(9/10): 1901-1951
doi: 10.1081/PDE-120016132
|
[7] |
Chueshov I, Eller M, Lasiecka I. Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation. Communications in Partial Differential Equations, 2005, 29(11/12): 1847-1876
doi: 10.1081/PDE-200040203
|
[8] |
Chueshov I, Lasiecka I. Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping. Providence: Memoirs of the American Mathematical Society, 2008
|
[9] |
Feireisl E. Global attractors for semilinear damped wave equations with supercritical exponent. Journal of Differential Equations, 1995, 116(2): 431-447
doi: 10.1006/jdeq.1995.1042
|
[10] |
Ghidaglia J M, Temam R. Regularity of the solutions of second order evolution equations and their attractors. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1987, 14(3): 485-511
|
[11] |
Grisvard P. Caractérisation de quelques espaces interpolation. Archive for Rational Mechanics 1967, 25(1): 40-63
|
[12] |
Guo Y X, Yao P F. Stabilization of Euler-Bernoulli plate equation with variable coefficients by nonlinear boundary feedback. Journal of Mathematical Analysis and Applications, 2006, 317(1): 50-70
doi: 10.1016/j.jmaa.2005.12.006
|
[13] |
Hale J K. Asymptotic Behavior of Dissipative Systems. Providence: American Mathematical Soc, 2010
|
[14] |
Haraux A. Two remarks on dissipative hyperbolic problems. Research Notes in Mathematics, 1985, 122: 161-179
|
[15] |
Lasiecka I, Triggiani R. Uniform stabilization of the wave equation with dirichlet or neumann feedback control without geometrical conditions. Applied Mathematics and Optimization, 1992, 25(2): 189-224
doi: 10.1007/BF01182480
|
[16] |
Lasiecka I, Triggiani R, Yao P F. Carleman estimates for a plate equation on a riemann manifold with energy level terms. Analysis and Applications-ISAAC, 2001, 2003: 199-236
|
[17] |
Lions J, Magenes E. Non-Homogeneous Boundary Value Problems and Applications. Berlin: Springer Science and Business Media, 2012
|
[18] |
Qin Y M. Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors. Berlin: Springer Science and Business Media, 2008
|
[19] |
Simon J. Compact sets in the space $L^p([0,T];B)$. Annali di Matematica pura ed applicata, 1986, 146(1): 65-96
doi: 10.1007/BF01762360
|
[20] |
Song W J, Yang G S. Existence of the global attractor to fractional order generalized coupled nonlinear schrodinger equations with derivative. Boundary Value Problems, 2018, 109(2018): 1-27
|
[21] |
Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Berlin: Springer Science and Business Media, 2012
|
[22] |
Triggiani R, Yao P F. Carleman estimates with no lower-order terms for general riemann wave equations. global uniqueness and observability in one shot. Applied Mathematics and Optimization, 2002, 46(2): 331-375
doi: 10.1007/s00245-002-0751-5
|
[23] |
Wang J C, Yao P F. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure and Applied Analysis, 2021, 21(6): 1-15
|
[24] |
Wu H, Shen C L, Yu Y L. An Introduction to Riemannian Geometry. Beijing: Univ of Beijing, 1989
|
[25] |
Yao P F. Observability inequalities for shallow shells. SIAM Journal on Control and Optimization, 2000, 38(6): 1729-1756
doi: 10.1137/S0363012999338692
|
[26] |
Yao P F. Modeling and Control in Vibrational and Structural Dynamics:a Differential Geometric Approach. Boca Raton: CRC Press, 2011
|
[27] |
Zhao C X, Zhao C Y, Zhong C K. The global attractor for a class of extensible beams with nonlocal weak damping. Discrete and Continuous Dynamical Systems-B, 2020, 25(3): 935-955
doi: 10.3934/dcdsb.2019197
|