[1] |
Marchenko V A. Sturm-Liouville Operators and Applications. Operator Theory Advances & Applications 22. Basle: Birkhauser Verlag, 1986
|
[2] |
Zakhariev B N, Suzko A A. Direct and Inverse Problems. Berlin-Heidelberg: Springer, 1990
|
[3] |
Calvert J M, Davison W D. Oscillation theory and computational procedures for matrix Sturm-Liouville eigenvalue problems with an application to the hydrogen molecular ion. Journal of Physics a Mathematical & General, 1968, 2(3): 278-292
|
[4] |
Shen C L, Shieh C T. On the multiplicity of eigenvalues of a vectorial Sturm-Liouville differential equations and some related spectral problems. Proc Amer Math Soc, 1999, 127: 2943-2952
doi: 10.1090/proc/1999-127-10
|
[5] |
Kong Q. Multiplicities of eigenvalues of a vector-valued Sturm-Liouville problem. Mathematika, 2002, 49: 119-127
doi: 10.1112/mtk.v49.1-2
|
[6] |
Yang C F, Huang Z Y, Yang X P. The multiplicity of spectra of a vectorial Sturm-Liouville differential equation of dimension two and some applications. Rocky Mountain J Math, 2007, 37(4): 1379-1398
|
[7] |
Veliev O A. Non-self-adjoint Sturm-Liouville operators with matrix potentials. Mathematical Notes, 2007, 81(4): 496-506
doi: 10.1134/S0001434607030273
|
[8] |
Seref F, Veliev O A. On sharp asymptotic formulas for the Sturm-Liouville operator with a matrix potential. Mathematical Notes, 2016, 100(1/2): 291-297
doi: 10.1134/S0001434616070245
|
[9] |
McLaughlin J R. Inverse spectral theory using nodal points as data-a uniqueness result. J Differential Equations, 1988, 73(2): 354-362
doi: 10.1016/0022-0396(88)90111-8
|
[10] |
Chen X, Cheng Y H, Law C K. Reconstructing potentials from zeros of one eigenfunction. Trans Amer Math So, 2011, 363: 4831-4851
|
[11] |
Gesztesy F, Simon B. Inverse spectral analysis with partial information on the potential: II. The case of discrete spectrum. Trans Amer Math Soc, 2000, 352: 2765-2787
doi: 10.1090/tran/2000-352-06
|
[12] |
Guo Y X, Wei G S. Inverse problems: dense nodal subset on an interior subinterval. J Differential Equations, 2013, 255(7): 2002-2017
doi: 10.1016/j.jde.2013.06.006
|
[13] |
Yang X F. A new inverse nodal problem. J Differential Equations, 2001, 169: 633-653
doi: 10.1006/jdeq.2000.3911
|
[14] |
Yurko V. Inverse nodal problems for Sturm-Liouville operators on star-type graphs. J Inverse Ill-Posed Probl, 2008, 16(7): 715-722
|
[15] |
Shen C L, Shieh C T. An inverse nodal problem for vectorial Sturm-Liouville equations. Inverse Problems, 2000, 16(2): 349-356
doi: 10.1088/0266-5611/16/2/306
|
[16] |
Cheng Y H, Shieh C T, Law C K. A vectorial inverse nodal problem. Proc Amer Math Soc, 2005, 133(5): 1475-1484
doi: 10.1090/proc/2005-133-05
|
[17] |
Agranovich Z S, Marchenko V A. The Inverse Problem of Scattering Theory. New York-London: Gordon and Breach Science Publishers, 1963
|
[18] |
Shen C L. Some inverse spectral problems for vectorial Sturm-Liouville equations. Inverse Problems, 2001, 17(5): 1253-1294
doi: 10.1088/0266-5611/17/5/303
|
[19] |
Naimark M A. Linear Differential Operators, Part I. New York: Frederick Ungar Publishing Co, 1967
|
[20] |
Weidmann J. Spectral Theory of Ordinary Differential Operators. Lecture Notes in Mathematics 1258. Berlin: Springer Verlag, 1987
|