数学物理学报 ›› 2023, Vol. 43 ›› Issue (2): 515-530.
收稿日期:
2021-08-30
修回日期:
2022-10-18
出版日期:
2023-04-26
发布日期:
2023-04-17
作者简介:
曾彪,E-mail: 基金资助:
Received:
2021-08-30
Revised:
2022-10-18
Online:
2023-04-26
Published:
2023-04-17
Supported by:
摘要:
该文研究一类带有弱连续算子的发展方程的一个最优控制问题. 通过运用Rothe方法和弱连续算子的一个满射定理, 建立方程的可解性. 然后证明最优控制问题的最优状态-控制对的存在性. 最后把主要结果应用到非平稳的Navier-Stokes-Voigt方程上.
中图分类号:
曾彪. 一类带有弱连续算子的发展方程的最优控制[J]. 数学物理学报, 2023, 43(2): 515-530.
Zeng Biao. Optimal Control for a Class of Nonlinear Evolutionary Equations with Weakly Continuous Operators[J]. Acta mathematica scientia,Series A, 2023, 43(2): 515-530.
[1] |
Ahmed N U. Existence of optimal controls for a class of systems governed by differential inclusions in Banach spaces. J Optim Theory Appl, 1986, 50: 213-237
doi: 10.1007/BF00939270 |
[2] | Ahmed N U. Existence of optimal relaxed controls for differential inclusions on Banach space//Lakshmi- kantham. Nonlinear Analysis and Applications. New York: CRC Press, 1987: 39-49 |
[3] | Ahmed N U. Properties of the relaxed trajectories for a class of nonlinear evolution matrixs on a Banach space. SIAM Journal on Control and Optimization, 1983, t2: 953-968 |
[4] | Papageorgiou N S. Existence of optimal controls for nonlinear systems in Banach spaces. J Optim Theory Appl, 1987, 53(3): 1581-1600 |
[5] |
Papageorgiou N S. Properties of the relaxed trajectories of evolution matrixs and optimal control. SIAM J Contr Optim, 1989, 27: 267-288
doi: 10.1137/0327014 |
[6] |
Papageorgiou N S. Relaxation and existenee of optimal controls for systems governed by evolution inclusions in separable Banach spaces. J Optim Theory Appl, 1990, 64: 573-594
doi: 10.1007/BF00939425 |
[7] | Cesari L. Existence of Solutions and Existence of Optimal Solutions. Mathematical Theories of Optimization, 1983, 979: 88-107 |
[8] | Cesari L. Optimization:Theory and Applications. New York: Springer-Verlag, 1983 |
[9] | Ahmed N U, Teo K L. Optimal Control of Distributed-Parameter Systems. New York: North-Holland, 1981 |
[10] | Lions J L. Optimal Control of Systems Governed by Partial Differential Equations. New York: Springer-Verlag, 1971 |
[11] |
Zeng B. Feedback control systems governed by evolution matrixs. Optimization, 2019, 68: 1223-1243
doi: 10.1080/02331934.2019.1578358 |
[12] |
Zeng B, Liu Z H. Existence results for impulsive feedback control systems. Nonlinear Analysis: Hybrid Systems, 2019, 33: 1-16
doi: 10.1016/j.nahs.2019.01.008 |
[13] |
Aizicovici S, Pavel N H. Anti-periodic solutions to a class of nonlinear differential matrixs in Hilbert space. J Functional Analysis, 1991, 99: 387-408
doi: 10.1016/0022-1236(91)90046-8 |
[14] | Barbu V. Nonlinear Semigroup and Differential Equations in Banach Spaces. Leyden: Noordhoff, 1976 |
[15] |
Carstensen C, Gwinner J. A theory of discretization for nonlinear evolution inequalities applied to parabolic Signorini problems. Ann Mat Pura Appl, 1999, 177: 363-394
doi: 10.1007/BF02505918 |
[16] | Denkowski Z, Migórski S, Papageorgiou N S. An Introduction to Nonlinear Analysis:Theory. New York: Kluwer Academic/Plenum Publishers, 2003 |
[17] | Li X J, Yong J M. Optimal Control Theory for Infinite Dimensional Systems. Boster: Birkhäuser, 1995 |
[18] |
Guo B Z, Xu Y S, Yang D H. Optimal actuator location of minimum norm controls for heat matrix with general controlled domain. J Differential Equations, 2016, 261: 3588-3614
doi: 10.1016/j.jde.2016.05.037 |
[19] |
Reyes J C D L, Dhamo V. Error estimates for optimal control problems of a class of quasilinear matrixs arising in variable viscosity fluid flow. Numer Math, 2016, 132: 691-720
doi: 10.1007/s00211-015-0737-2 |
[20] |
Sattayatham P. Strongly nonlinear impulsive evolution matrixs and optimal control. Nonlinear Analysis, 2004, 57: 1005-1020
doi: 10.1016/j.na.2004.03.025 |
[21] | Tanabe H. Equations of Evolution. London: Pitman, 1979 |
[22] |
Xiang X L. Optimal controls for a class of strongly nonlinear evolution matrixs with constraint. Nonlinear Analysis, 2001, 47: 57-66
doi: 10.1016/S0362-546X(01)00156-0 |
[23] |
Yamazaki N. Convergence and optimal control problems of nonlinear evolution matrixs governed by time-dependent operator. Nonlinear Analysis, 2009, 70: 4316-4331
doi: 10.1016/j.na.2008.09.015 |
[24] |
Francŭ J. Weakly continuous operators, applications to differential matrixs. Application of Mathematics, 1984, 39(1): 45-56
doi: 10.21136/AM |
[25] | Roubiček T. Nonlinear Partial Differential Equations with Applications. Berlin: Birkhäuser, 2005 |
[26] | Zeng B, Migórski S. Evolutionary subgradient inclusions with nonlinear weakly continuous operators and applications. Comput. Math. Appl., 2018, 75: 89-104 |
[27] | Zeng B. Feedback control for nonlinear evolutionary matrixs with applications. Nonlinear Analysis: Real World Applications, 2022, 66: 103535. |
[28] |
Shen S, Liu F, Chen J, et al. Numerical techniques for the variable order time fractional diffusion matrix. Appl Math Comput, 2012, 218: 10861-10870
doi: 10.1016/j.amc.2012.04.047 |
[29] | Kačur J. Method of Rothe in Evolution Equations. Teubner-Texte zur Mathematik 80. Leipzig: B G Teubner, 1985 |
[30] |
Balder E J. Necessary and sufficient conditions for $L^1$-strong weak lower semicontinuity of integral functionals. Nonlinear Anal, 1987, 11: 1399-1404
doi: 10.1016/0362-546X(87)90092-7 |
[31] |
Anh C T, Nguyet T M. Optimal control of the instationary three dimensional Navier-Stokes-Voigt matrixs. Numerical Functional Analysis and Optimization, 2016, 37(4): 415-439
doi: 10.1080/01630563.2015.1136891 |
[32] |
Anh C T, Trang P T. Pull-back attractors for three-dimensional Navier-Stokes-Voigt matrixs in some unbounded domains. Proc Royal Soc Edinburgh Sect A, 2013, 143: 223-251
doi: 10.1017/S0308210511001491 |
[33] |
Celebi A O, Kalantarov V K, Polat M. Global attractors for 2D Navier-Stokes-Voight matrixs in an unbounded domain. Appl Anal, 2009, 88: 381-392
doi: 10.1080/00036810902766682 |
[34] |
García-Luengo J, Marín-Rubio P, Real J. Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt matrixs. Nonlinearity, 2012, 25: 905-930
doi: 10.1088/0951-7715/25/4/905 |
[35] |
Kalantarov V K, Titi E S. Global attractor and determining modes for the 3D Navier-Stokes-Voight matrixs. Chin Ann Math Ser B, 2009, 30: 697-714
doi: 10.1007/s11401-009-0205-3 |
[36] |
Kalantarov V K, Titi E S. Gevrey regularity for the attractor of the 3D Navier-Stokes-Voight matrixs. J Nonlinear Sci, 2009, 19: 133-152
doi: 10.1007/s00332-008-9029-7 |
[37] | Yue G, Zhong C K. Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight matrixs. Discrete Cont Dyna Syst Ser B, 2011, 16: 985-1002 |
[38] | Robinson J C. Infinite-Dimensional Dynamical Systems. Cambridge: Cambridge University Press, 2001 |
[39] | Temam R. Navier-Stokes Equations: Theory and Numerical Analysis, 2nd edition. North-Holland: Amsterdam, 1979 |
[40] | Contantin P, Foias C. Navier-Stokes Equations, Chicago Lectures in Mathematics. Chicago: University of Chicago Press, 1988 |
[41] |
Dudek S, Kalita P, Migórski S. Stationary flow of non-Newtonian fluid with nonmonotone frictional boundary conditions. Z Angew Math Phys, 2015, 66: 2625-2646
doi: 10.1007/s00033-015-0545-7 |
[1] | 康笑东, 范虹霞. 一类具有瞬时脉冲的二阶发展方程的近似可控性[J]. 数学物理学报, 2023, 43(2): 421-432. |
[2] | 李强,刘立山. 具有周期脉冲的分数阶发展方程周期mild解的存在性[J]. 数学物理学报, 2022, 42(5): 1433-1450. |
[3] | 崔骁勇,张灿. 一类带指数权最优控制问题的Turnpike性质[J]. 数学物理学报, 2022, 42(4): 1256-1264. |
[4] | 何泽荣,窦艺萌,韩梦杰. 具有尺度等级和时滞的种群系统的最优边界控制[J]. 数学物理学报, 2022, 42(3): 867-880. |
[5] | 何泽荣,周楠. 具有年龄等级结构的种群竞争系统的最优收获控制[J]. 数学物理学报, 2022, 42(1): 228-244. |
[6] | 何泽荣,韩梦杰. 带时滞的尺度等级结构种群系统的最优初始控制[J]. 数学物理学报, 2021, 41(4): 1181-1191. |
[7] | 彭小明,郑筱筱,尚亚东. 具有非线性阻尼的Navier-Stokes-Voigt方程的拉回吸引子[J]. 数学物理学报, 2021, 41(2): 357-369. |
[8] | 刘琼琳,唐应辉. 在 |
[9] | 西宣宣,侯咪咪,周先锋. 非自治Caputo分数阶发展方程弱解的适定性与不变集[J]. 数学物理学报, 2021, 41(1): 149-165. |
[10] | 罗乐,唐应辉. 具有p-进入规则和Min(N, D, V)-策略的M/G/1排队系统容量问题研究[J]. 数学物理学报, 2019, 39(5): 1228-1246. |
[11] | 崔静,梁秋菊,毕娜娜. 分数布朗运动驱动的带脉冲的中立性随机泛函微分方程的渐近稳定性[J]. 数学物理学报, 2019, 39(3): 570-581. |
[12] | 唐矛宁,孟庆欣. 带跳跃平均场倒向随机微分方程的线性二次最优控制[J]. 数学物理学报, 2019, 39(3): 620-637. |
[13] | 朱波,刘立山. 带瞬时脉冲的分数阶非自制发展方程解的存在唯一性[J]. 数学物理学报, 2019, 39(1): 105-113. |
[14] | 胡弟弟,汪璇. 记忆型无阻尼抽象发展方程的强时间依赖全局吸引子[J]. 数学物理学报, 2019, 39(1): 81-94. |
[15] | 潘取玉,唐应辉. 在延迟Min (N, D)-策略M/G/1可修排队系统及最优控制策略[J]. 数学物理学报, 2018, 38(5): 1014-1031. |
|