[1] |
Landau L D, Lifschitz E M. Fluid Mechanics. Oxford: Pergamon, 1987
|
[2] |
Chaplygin S. On gas jets. Sci Mem Moscow Univ Math Phys, 1904, 21: 1-121
|
[3] |
Tsien H S. Two dimensional subsonic flow of compressible fluids. J Aeronaut Sci, 1939, 6: 399-407
doi: 10.2514/8.916
|
[4] |
Karman T V. Compressibility effects in aerodynamics. J Aeronaut Sci, 1941, 8: 337-365
doi: 10.2514/8.10737
|
[5] |
Bento M C, Bertolami O, Sen A A. Generalized Chalplygin gas, accelerated expansion and dark-energy-matter unification. Phys Rev D, 2002, 66: 043507
|
[6] |
Cruz N, Lepe S, Pena F. Dissipative generalized Chaplygin gas as phantom dark energy physics. Phys Lett B, 2007, 646: 177-182
doi: 10.1016/j.physletb.2006.12.070
|
[7] |
Setare M R. Holographic Chaplygin gas model. Phys Lett B, 2007, 648: 329-332
doi: 10.1016/j.physletb.2007.03.025
|
[8] |
Setare M R. Interacting holographic generalized Chaplygin gas model. Phys Lett B, 2007, 654: 1-6
doi: 10.1016/j.physletb.2007.08.038
|
[9] |
Brenier Y. Solutions with concentration to the Riemann problem for one-dimensional Chaplygin gas matrixs. J Math Fluid Mech, 2005, 7: 326-331
|
[10] |
Cheng H J, Yang H C. Riemann problem for the relativistic Chaplygin Euler matrixs. J Math Anal Appl, 2011, 381: 17-26
doi: 10.1016/j.jmaa.2011.04.017
|
[11] |
Cheng H J, Yang H C. Riemann problem for the isentropic relativistic Chaplygin Euler matrixs. Z Angew Math Phys, 2012, 63: 429-440
doi: 10.1007/s00033-012-0199-7
|
[12] |
Godin P. Global existence of a class of smooth 3D spherically symmetric flows of Chaplygin gases with variable entropy. J Math Pures Appl, 2007, 87: 91-117
doi: 10.1016/j.matpur.2006.10.011
|
[13] |
Ding B B, Witt I, Yin H C. The global smooth symmetric solution to 2-D full compressible Euler system of Chaplygin gases. J Differential Equations, 2015, 258: 445-482
doi: 10.1016/j.jde.2014.09.018
|
[14] |
Hou F, Yin H C. Global smooth axisymmetric solutions to 2D compressible Euler matrixs of Chaplygin gases with non-zero vorticity. J Differential Equations, 2019, 267: 3114-3161
doi: 10.1016/j.jde.2019.03.038
|
[15] |
Hou F, Yin H C. On global axisymmetric solutions to 2D compressible full Euler matrixs of Chaplygin gases. Discrete Contin Dyn Syst, 2010, 40: 1435-1492
doi: 10.3934/dcds.2020083
|
[16] |
Kong D X, Liu K, Wang Y. Global existence of smooth solutions to two-dimensional compressible isentropic Euler matrixs for Chaplygin gases. Sci China Math, 2010, 53: 719-738
doi: 10.1007/s11425-010-0060-4
|
[17] |
Lei Z, Wei C H. Global radial solutions to 3D relativistic Euler matrixs for non-isentropic Chaplygin gases. Math Ann, 2017, 367: 1363-1401
doi: 10.1007/s00208-016-1396-z
|
[18] |
Alinhac S. Une solution approchée en grand temps des équations d'Euler compressibles axisymétriques en dimen-sion deux. Commun Partial Differ Equ, 1992, 17: 447-490
|
[19] |
Alinhac S. Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux. Invent Math, 1993, 111: 627-670
doi: 10.1007/BF01231301
|
[20] |
Athanasiou N, Zhu S G. Formation of singularities for the relativistic Euler matrixs. J Differential Equations, 2021, 284: 284-317
doi: 10.1016/j.jde.2021.03.010
|
[21] |
Chen G. Formation of singularity and smooth wave propagation for the non-isentropic compressible Euler matrixs. J Hyperbolic Differ Equ, 2011, 8: 671-690
doi: 10.1142/S0219891611002536
|
[22] |
Chen G, Pan R H, Zhu S G. Singularity formation for the compressible Euler matrixs. SIAM J Math Anal, 2017, 49: 2591-2614
doi: 10.1137/16M1062818
|
[23] |
Christodoulou D. The formation of Shocks in 3-dimensional Fluids. European Mathematical Society, 2007
|
[24] |
Christodoulou D, Miao S. Compressible Flow and Euler's Equations. Boston, Beijing: International Press; Higher Education Press, 2014
|
[25] |
Guo Y, Tahvildar Z S. Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics. Cntemp Math, 1999, 238: 151-161
|
[26] |
Luk J, Speck J. Shock formation in solutions to the 2D compressible Euler matrixs in the presence of non-zero vorticity. Invent Math, 2018, 214: 1-169
doi: 10.1007/s00222-018-0799-8
|
[27] |
Pan R H, Smoller J. Blowup of smooth solutions for relativistic Euler matrixs. Commun Math Phys, 2006, 262: 729-755
doi: 10.1007/s00220-005-1464-9
|
[28] |
Majda A. Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematical Sciences, 1984, 53
|
[29] |
Qu P. Mechanism of singularity formation for quasilinear hyperbolic systems with linearly degenerate characteristic fields. J Differential Equations, 2011, 251: 2066-2081
doi: 10.1016/j.jde.2011.07.005
|
[30] |
Lai G, Zhu M. Formation of singularities of solutions to the compressible Euler matrixs for a Chaplygin gas. Applied Mathematics Letters, 2022, 129: 107978
|
[31] |
Li J Q, Zhang T, Zheng Y X. Simple waves and a characteristic decomposition of the two dimensional compressible Euler matrixs. Comm Math Phys, 2006, 267: 1-12
doi: 10.1007/s00220-006-0033-1
|
[32] |
Li J Q, Zheng Y X. Interaction of rarefaction waves of the two-dimensional self-similar Euler matrixs, Arch Ration Mech Anal, 2009, 193: 623-657
doi: 10.1007/s00205-008-0140-6
|
[33] |
Li T T, Yu W C. Boundary Value Problem for Quasilinear Hyperbolic Systems. Duke University, 1985
|