数学物理学报 ›› 2023, Vol. 43 ›› Issue (2): 447-457.

• • 上一篇    下一篇

基于变分方法的脉冲微分方程 Neumann 边值问题多重解的存在性

廖丹1,2,张慧萍3,姚旺进1,2,*()   

  1. 1应用数学福建省高校重点实验室 福建莆田 351100
    2莆田学院数学与金融学院 福建莆田 351100
    3福建师范大学数学与统计学院 福州 350007
  • 收稿日期:2021-08-27 修回日期:2022-09-20 出版日期:2023-04-26 发布日期:2023-04-17
  • 通讯作者: 姚旺进,E-mail: 13635262963@163.com
  • 基金资助:
    福建省自然科学基金(2021J05237);福建省高校创新团队培育计划(2018-39)

Variational Approach to Existence of Multiple Solutions for Neumann Boundary Value Problem of Impulsive Differential Equations

Liao Dan1,2,Zhang Huiping3,Yao Wangjin1,2,*()   

  1. 1Key Laboratory of Applied Mathematics of Fujian Province University, Fujian Putian 351100
    2School of Mathematics and Finance, Putian University, Fujian Putian 351100
    3College of Mathematics and Statistics, Fujian Normal University, Fuzhou 350007
  • Received:2021-08-27 Revised:2022-09-20 Online:2023-04-26 Published:2023-04-17
  • Supported by:
    Natural Science Foundation of Fujian Province(2021J05237);Program for Innovative Research Team in Science and Technology in Fujian Province University(2018-39)

摘要:

该文研究一类含有$p$-Laplacian 算子的脉冲微分方程 Neumann 边值问题解的多重性. 当非线性项不满足Ambrosetti-Rabinowitz 条件时, 通过变分方法获得该脉冲边值问题具有无穷多个古典解.

关键词: Neumann 边值问题, Cerami 条件, 变分方法

Abstract:

In this paper, we consider the multiplicity of solutions for Neumann boundary value problem of impulsive differential matrixs with $p$-Laplacian operator. Under the assumption that the nonlinearity does not satisfy Ambrosetti-Rabinowitz condition, infinitely many classical solutions for the impulsive boundary value problem are obtained via variational method.

Key words: Neumann boundary value problem, Cerami condition, Variational method

中图分类号: 

  • O175.14