数学物理学报 ›› 2023, Vol. 43 ›› Issue (2): 433-446.

• • 上一篇    下一篇

全空间RN上双相问题径向解的多解性

葛斌*(),袁文硕()   

  1. 哈尔滨工程大学数学科学学院 哈尔滨 150001
  • 收稿日期:2021-08-05 修回日期:2022-04-25 出版日期:2023-04-26 发布日期:2023-04-17
  • 通讯作者: 葛斌,E-mail:gebin791025@hrbeu.edu.cn
  • 作者简介:袁文硕,E-mail: yuanwenshuo@hrbeu.edu.cn
  • 基金资助:
    国家自然科学基金(11201095);中央高校基本科研业务费(3072022TS2402);黑龙江省博士后科研启动基金(LBH-Q14044);黑龙江省自然科学基金留学回国基金(LC201502)

Existence and Multiplicity of Radial Solutions for Double Phase Problem on the Entire Space RN

Ge Bin(),Yuan Wenshuo()   

  1. College of Mathematical Sciences, Harbin Engineering University, Harbin 150001
  • Received:2021-08-05 Revised:2022-04-25 Online:2023-04-26 Published:2023-04-17
  • Supported by:
    National Natural Science Foundation of China(11201095);Fundamental Research Funds for the Central Universities(3072022TS2402);Postdoctoral Research Startup Foundation of Heilongjiang(LBH-Q14044);Science Research Funds for Overseas Returned Chinese Scholars of Heilongjiang Province(LC201502)

摘要: 该研究涉及以下双相问题div(|u|p2u+μ(x)|u|q2u)+|u|p2u+μ(x)|u|q2u=λf(x,u),xRN,其中 1 < p < q < N, qp1+αN, λ 是实参数, 0μC0,α(RN), α(0,1]f:RN×RR 满足 Carathéodory 条件. 目的是通过利用抽象的临界点理论来确定参数λ的精确正区间, 使该问题允许至少一个或两个非平凡径向对称解.

关键词: 双相算子, 径向对称解, 临界点定理, 变分方法

Abstract: This study is concerned with the following double phase problem div(|u|p2u+μ(x)|u|q2u)+|u|p2u+μ(x)|u|q2u=λf(x,u),xRN, where 1 < p < q < N, qp1+αN, λ is a real parameter, 0μC0,α(RN) with α(0,1] and f:RN×RR satisfies a Carathéodory condition. The aim is to determine the precise positive interval of λ for which the problem admits at least one or two nontrivial radially symmetric solutions by applying abstract critical point results.

Key words: Double phase operator, Radially symmetric solutions, Critical point theorems, Variational methods

中图分类号: 

  • O175