[1] |
Kalman R E. Controllablity of linear dynamical systems. Contrib Diff Equ, 1963, 1: 190-213
|
[2] |
Cui J, Yan L T. Existence results for impulsive neutral second-order stochastic evolution matrixs with nonlocal conditions. Math Comput Model, 2013, 57: 2378-2387
doi: 10.1016/j.mcm.2011.12.037
|
[3] |
Zeng B, Liu Z H. Existence results for impulsive feedback control systems. Nonlinear Analysis: Hybrid Systems, 2019, 33: 1-16
doi: 10.1016/j.nahs.2019.01.008
|
[4] |
Li F, Wang H W. An existence result for nonlocal impulsive second-order cauchy problems with finite delay. Abstr Appl Anal, 2013: Artide ID 724854
|
[5] |
Gao C X, Li K Z, Feng E M, et al. Nonlinear impulsive system of fed-batch culture in fermentative production and its properties. Chaos Soliton Fract, 2006, 28(1): 271-277
doi: 10.1016/j.chaos.2005.05.027
|
[6] |
Jin L, Liu J H, Xiao T J. Nonlocal impulsive problems for nonlinear differential matrixs in Banach spaces. Math Comput Model, 2009, 49: 798-804
doi: 10.1016/j.mcm.2008.05.046
|
[7] |
Hale J K, Kato J. Phase space for retarded matrixs with infinite delay. Funkc Ekvacioj-Ser I, 1978, 21(1): 11-41
|
[8] |
Hino Y, Murakami S, Naito T. Functional Differential Equations with Infinite Delay. New York: Springer Verlag, 1991
|
[9] |
Arora S, Mohan M T, Dabas J. Approximate controllability of the non-autonomous impulsive evolution matrix with state-dependent delay in Banach spaces. Nonlinear Analysis: Hybrid Systems, 2021, 39: 100989
|
[10] |
Zhou Y, Suganya S, Mallika A M, et al. Approximate controllability of impulsive fractional integro-differential matrix with state-dependent delay in Hilbert spaces. Ima J Math Control I, 2019, 36(2): 603-622
|
[11] |
Shen L J, Sun J T. Approximate controllability of stochastic impulsive functional systems with infinite delay. Automatica, 2012, 48(10): 2705-2709
doi: 10.1016/j.automatica.2012.06.098
|
[12] |
Chen P Y, Zhang X P, Li Y X. Approximate controllability of non-autonomous evolution system with nonlocal conditions. J Dyn Control Syst, 2020, 26(6): 1-16
doi: 10.1007/s10883-018-9423-x
|
[13] |
Mokkedem F Z, Fu X L. Approximate controllability of a semilinear neutral evolution system with infinite delay. Int J Robust Nonlin, 2017, 27(7): 1-25
doi: 10.1002/rnc.v27.1
|
[14] |
Naito K. Controllability of semilinear control systems dominated by the linear part. SIAM J Control Optim, 1987, 25: 715-722
doi: 10.1137/0325040
|
[15] |
康笑东, 邵勇, 范虹霞. 具有结构阻尼的弹性系统的近似可控性. 武汉大学学报(理学版), 2021, 67(2): 151-157
|
|
Kang X D, Shao Y, Fan H X. Approximate controllability of elastic systems with structural damping. Journal of Wuhan University (SCIENCE EDITION), 2021, 67(2): 151-157
|
[16] |
Sakthivel R, Anandhi E R, Mahmudov N I. Approximate controllability of second-order systems with state-dependent delay. Numer Func Anal Opt, 2008, 29(11-12): 1347-1362
doi: 10.1080/01630560802580901
|
[17] |
Arthi G, Park J H, Jung H Y. Existence and controllability results for second-order impulsive stochastic evolution systems with state-dependent delay. Appl Math Comput, 2014, 248: 328-341
doi: 10.1016/j.amc.2014.09.084
|
[18] |
Su X F, Fu X L. Approximate controllability of second-order semilinear evolution systems with finite delay. Acta Math Appl Sin-E, 2021, 37(3): 573-589
|
[19] |
Travis C C, Webb G F. Compactness, regularity, and uniform continuity properties of strongly continuous cosine families. Houston J Math, 1977, 3(4): 555-567
|
[20] |
Travis C C, Webb G F. Second order differential matrixs in Banach space. Nonlinear Equations in Abstract Spaces, 1978, 8(1): 331-361
|
[21] |
Curtain R F, Zwart H. An Introduction to Infinite-Dimensional Linear Systems Theory. New York: Springer, 1995
|