数学物理学报 ›› 2023, Vol. 43 ›› Issue (2): 355-376.

• • 上一篇    下一篇

带分数阶磁效应的压电梁在有/无热效应时的稳定性

安雁宁1,刘文军1,2,3,*(),孔奥文1   

  1. 1南京信息工程大学数学与统计学院 南京 210044
    2南京信息工程大学江苏省应用数学中心 南京210044
    3南京信息工程大学江苏省系统建模与数据分析国际合作联合实验室 南京210044
  • 收稿日期:2021-09-29 修回日期:2022-10-17 出版日期:2023-04-26 发布日期:2023-04-17
  • 通讯作者: 刘文军,E-mail:wjliu@nuist.edu.cn
  • 基金资助:
    国家自然科学基金(12271261);江苏省重点研发计划(社会发展)(BE2019725);江苏省青蓝工程项目和江苏省研究生科研与实践创新计划(KYCX22_1125)

Stability of Piezoelectric Beams with Magnetic Effects of Fractional Derivative Type and with/without Thermal Effects

An Yanning1,Liu Wenjun1,2,3,*(),Kong Aowen1   

  1. 1School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044
    2Center for Applied Mathematics of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing 210044
    3Jiangsu International Joint Laboratory on System Modeling and Data Analysis, Nanjing University of Information Science and Technology, Nanjing 210044
  • Received:2021-09-29 Revised:2022-10-17 Online:2023-04-26 Published:2023-04-17
  • Supported by:
    National Natural Science Foundation of China(12271261);Key Research and Development Program of Jiangsu Province (Social Development)(BE2019725);Qing Lan Project of Jiangsu Province and the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX22_1125)

摘要:

该文考虑了具有分数阶磁效应的一维压电梁系统的适定性及稳定性. 首先, 通过引入新函数将原系统转换为不含分数阶边界项的等价系统, 并利用Lumer-Philips定理证明了该系统的适定性. 然后, 基于谱分析证得无热效应的压电梁系统的非指数稳定性, 并借助Borichev-Tomilov定理[33]进一步推得系统是多项式稳定的. 此外, 该文又讨论了有热效应的压电梁系统的适定性, 并借助扰动泛函方法证明了压电梁系统在带有热效应时的指数稳定性.

关键词: 压电梁, 渐近行为, 分数阶导数, 半群理论

Abstract:

In this paper, we consider the well-posedness and asymptotic behavior of a one-dimensional piezoelectric beam system with control boundary conditions of fractional derivative type, which represent magnetic effects on the system. By introducing two new matrixs to deal with control boundary conditions of fractional derivative type, we obtain a new equivalent system, so as to show the well-posedness of the system by using Lumer-Philips theorem. We then prove the lack of exponential stability by a spectral analysis, and obtain the polynomial stability of the system without thermal effects by using a result of Borichev and Tomilov (Math. Ann. 347 (2010), 455-478). To find a more stable system, we then consider the stability of the above system with thermal effects described by Fourier's law, and achieve the exponential stability for the system by using the perturbed functional method.

Key words: Piezoelectric beams, Asymptotic behavior, Fractional derivative, Semigroup method

中图分类号: 

  • O175.21