[1] |
Dagdeviren C, Duk Yang B, Su Y, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung and diaphragm. P Natl Acad Sci USA, 2014, 111(5): 1927-1932
doi: 10.1073/pnas.1317233111
|
[2] |
Gu G Y, Zhu L M, Su C Y, et al. Modeling and control of piezo-actuated nanopositioning stages: A survey. IEEE T Autom Sci Eng, 2014, 13(1): 313-332
|
[3] |
Cuc A, Giurgiutiu V, Joshi S, Tidwell Z. Structural health monitoring with piezoelectric wafer active sensors for space applications. AIAA J, 2007, 45(12): 2838-2850
doi: 10.2514/1.26141
|
[4] |
Erturk A, Inman D J. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust, 2008, 130( 4): 041002
|
[5] |
Yang J S. A review of a few topics in piezoelectricity. Appl Mech Rev Nov, 2006, 59(6): 335-345
|
[6] |
Banks H T, Smith R C, Wang Y. Smart Material Structures-Modeling, Estimation and Control. Chichester, Wiley, 1996
|
[7] |
Dietl J M, Wickenheiser A M, Garcia E. A Timoshenko beam model for cantilevered piezoelectric energy harvesters. Smart Mater Struct, 2010, 19( 5): 055018
|
[8] |
Morris K A, Özer A Ö. Strong stabilization of piezoelectric beams with magnetic effects. 52nd IEEE Conference on Decision and Control. IEEE, 2013: 3014-3019
|
[9] |
Morris K A, Özer A Ö. Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects. SIAM J Control Optim, 2014, 52(4): 2371-2398
doi: 10.1137/130918319
|
[10] |
Ramos A J A, Freitas M M, Almeida D S, et al. Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect. Z Angew Math Phys, 2019, 70(2): 1-14
doi: 10.1007/s00033-018-1046-2
|
[11] |
Benaissa A, Benazzouz S. Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary dissipative feedback of fractional derivative type. Z Angew Math Phys, 2017, 68(4): 1-38
doi: 10.1007/s00033-016-0745-9
|
[12] |
Benaissa A, Gaouar S. Asymptotic stability for the Lamé system with fractional boundary damping. Comput Math Appl, 2019, 77(5): 1331-1346
|
[13] |
Maryati T, Muñoz Rivera J, Poblete V, Vera O. Asymptotic behavior in a laminated beams due interfacial slip with a boundary dissipation of fractional derivative type. Appl Math Optim, 2021, 84(1): 85-102
doi: 10.1007/s00245-019-09639-1
|
[14] |
Akil M, Chitour Y, Ghader M, Wehbe A. Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary. Asymptot Anal, 2020, 119(3-4): 221-280
|
[15] |
Maryati T K, Muñoz Rivera J E, Rambaud A, Vera O. Stability of an $N$-component Timoshenko beam with localized Kelvin-Voigt and frictional dissipation. Electron J Differential Equations, 2018, 136: 1-18
|
[16] |
Rivera J M, Poblete V, Vera O. Stability for an Klein-Gordon matrix type with a boundary dissipation of fractional derivative type. Asymptot Anal, 2022, 127(3): 249-273
|
[17] |
Bouzettouta L, Abdelhak D. Exponential stabilization of the full von Kármán beam by a thermal effect and a frictional damping and distributed delay. J Math Phys, 2019, 60( 4): 041506
|
[18] |
Park J H, Kang J R. Energy decay of solutions for Timoshenko beam with a weak non-linear dissipation. IMA J Appl Math, 2011, 76(2): 340-350
doi: 10.1093/imamat/hxq040
|
[19] |
Belhannache F, Messaoudi S A. On the general stability of a viscoelastic wave matrix with an integral condition. Acta Math Appl Sin Engl Ser, 2020, 36(4): 857-869
doi: 10.1007/s10255-020-0979-3
|
[20] |
Hao J, Rao B. Influence of the hidden regularity on the stability of partially damped systems of wave matrixs. J Math Pures Appl, 2020, 143(9): 257-286
doi: 10.1016/j.matpur.2020.09.004
|
[21] |
Keddi A A, Apalara T A, Messaoudi S A. Exponential and polynomial decay in a thermoelastic-Bresse system with second sound. Appl Math Optim, 2018, 77(2): 315-341
doi: 10.1007/s00245-016-9376-y
|
[22] |
Liu W, Kong X, Li G. Lack of exponential decay for a laminated beam with structural damping and second sound. Ann Polon Math, 2020, 124(3): 281-289
doi: 10.4064/ap181224-17-9
|
[23] |
Alves M S, Monteiro R N. Stabilization for partially dissipative laminated beams with non-constant coefficients. Z Angew Math Phys, 2020, 71(5): 1-15
doi: 10.1007/s00033-019-1224-x
|
[24] |
Mustafa M I. Optimal energy decay result for nonlinear abstract viscoelastic dissipative systems. Z Angew Math Phys, 2021, 72(2): Paper No. 67
|
[25] |
Cardozo C L, Jorge Silva M A, Ma T F, Muñoz Rivera J E. Stability of Timoshenko systems with thermal coupling on the bending moment. Math Nachr, 2019, 292(12): 2537-2555
doi: 10.1002/mana.201800546
|
[26] |
Feng B, Yang X G. Long-time dynamics for a nonlinear Timoshenko system with delay. Appl Anal, 2017, 96(4): 606-625
doi: 10.1080/00036811.2016.1148139
|
[27] |
Liu W, Zhao W. Stabilization of a thermoelastic laminated beam with past history. Appl Math Optim, 2019, 80(1): 103-133
doi: 10.1007/s00245-017-9460-y
|
[28] |
Liu W, Chen D, Chen Z. Long-time behavior for a thermoelastic microbeam problem with time delay and the Coleman-Gurtin thermal law. Acta Math Sci, 2021, 41B(2): 609-632
|
[29] |
Jiang J. Boundedness and exponential stabilization in a parabolic-elliptic Keller-Segel model with signal-dependent motilities for local sensing chemotaxis. Acta Math Sci, 2022, 42B(3): 825-846
|
[30] |
欧阳成, 汪维刚, 莫嘉琪. 分数阶广义扰动热波方程. 数学物理学报, 2020, 40A(2): 452-459
|
|
Ouyang C, Wang W G, Mo J Q. The fractional generalized disturbed thermal wave matrix. Acta Math Sci, 2020, 40A(2): 452-459
|
[31] |
Mbodje B. Wave energy decay under fractional derivative controls. IMA J Math Control Inform, 2006, 23(2): 237-257
doi: 10.1093/imamci/dni056
|
[32] |
Engel K J, Nagel R. One-Parameter Semigroups for Linear Evolution Equations. New York: Springer, 2000
|
[33] |
Borichev A, Tomilov Y. Optimal polynomial decay of functions and operator semigroups. Math Ann, 2010, 347(2): 455-478
doi: 10.1007/s00208-009-0439-0
|