数学物理学报 ›› 2023, Vol. 43 ›› Issue (2): 377-398.

• • 上一篇    下一篇

时空分数阶扩散波动方程的初值识别问题

杨帆*(),曹英,李晓晓   

  1. 兰州理工大学理学院 兰州 730050
  • 收稿日期:2022-02-18 修回日期:2022-10-17 出版日期:2023-04-26 发布日期:2023-04-17
  • 通讯作者: 杨帆,E-mail:yfggd114@163.com
  • 基金资助:
    国家自然科学基金(11961044);兰州理工大学博士基金和甘肃省自然科学基金(21JR7RA214)

Identification of Initial Values of Space-Time Fractional Diffusion-Wave Equation

Yang Fan*(),Cao Ying,Li Xiaoxiao   

  1. School of Science, Lanzhou University of Technology, Lanzhou 730050
  • Received:2022-02-18 Revised:2022-10-17 Online:2023-04-26 Published:2023-04-17
  • Supported by:
    NSFC(11961044);Doctor Fund of Lanzhou University of Techonology and the NSF of Gausu Province(21JR7RA214)

摘要:

研究具有时空分数阶导数的扩散波动方程的初值识别反问题. 分析该反问题的不适定性, 给出条件稳定性结果. 利用 Tikhonov 正则化方法恢复解的稳定性, 并分别给出在先验和后验正则化参数选取规则下, 正则解和精确解之间的误差估计. 通过数值算例说明 Tikhonov 正则化方法求解此类反问题非常有效.

关键词: 时空分数阶扩散波动方程, 不适定问题, 初值识别, Tikhonov 正则化方法, 误差估计

Abstract:

In this paper, we study the identification of unknown initial values of time-space fractional diffusion-wave matrix. Firstly, we prove that the problem is ill-posed and give the conditional stability result. Then, we use Tikhonov regularization method to restore the stability of the solutions, and give the convergence error estimates under a priori regularization parameter selection rule and a posteriori regularization parameter selection rule. Finally, numerical examples show that the regularization method is effective.

Key words: Time-space fractional diffusion-wave matrix, Ill-posed problem, Identify unknown initial values, Tikhonov regularization method, Error estimation

中图分类号: 

  • O175