1 |
Fujita H . On the blowing up of solutions of the Cauchy problem for ut=Δu + u1+α. J Fac Sci Univ Tokyo Sect I, 1966, 13, 109- 124
|
2 |
Hayakawa K . On nonexistence of global solutions of some semi-linear parabolic differential equations. Proceedings of the Japan Academy, 1973, 49 (7): 503- 505
|
3 |
Kobayashi K , Sirao T , Tanaka H . On the growing up problem for semi-linear heat equations. Journal of the Mathematical Society of Japan, 1977, 29 (3): 407- 424
|
4 |
Amour L , Ben-Artzi M . Global existence and decay for viscous Hamilton-Jacobi equations. Nonlinear Analysis Theory Methods and Applications, 1998, 31 (5): 621- 628
|
5 |
Laurencot P , Souplet P . On the growth of mass for a viscous Hamilton-Jacobi equation. Journal d'Analyse Mathématique, 2003, 89 (1): 367- 383
doi: 10.1007/BF02893088
|
6 |
Gilding B H . The Cauchy problem for ut=Δu +|▽u|q, large-time behaviour. Journal de Mathématiques Pures et Appliquées, 2005, 84 (6): 753- 785
doi: 10.1016/j.matpur.2004.11.003
|
7 |
Kato T . Blow-up of solutions of some nonlinear hyperbolic equations. Communications on Pure and Applied Mathematics, 1980, 33 (4): 501- 505
doi: 10.1002/cpa.3160330403
|
8 |
Strauss W A. Everywhere Defined Wave Operators//Crandall M G. Nonlinear Evolution Equations. New York: Academic Press, 1978: 85-102
|
9 |
Glassey R T . Existence in the large for □u=F(u) in two space dimensions. Mathematische Zeitschrift, 1981, 178 (2): 233- 261
doi: 10.1007/BF01262042
|
10 |
Zhou Y . Cauchy problem for semilinear wave equations in four space dimensions with small initial data. J Differential Equations, 1995, 8 (2): 135- 144
|
11 |
Georgiev V , Lindblad H , Sogge C D . Weighted Strichartz estimates and global existence for semilinear wave equations. American Journal of Mathematics, 1997, 119 (6): 1291- 1319
doi: 10.1353/ajm.1997.0038
|
12 |
Tataru D . Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation. Transactions of the American Mathematical Society, 2001, 353 (2): 795- 807
|
13 |
Schaeffer J . The equation utt-Δu=|u|p for the critical value of p. Proc Roy Soc Edinburgh Sect A, 1985, 101 (1/2): 31- 44
|
14 |
Zhou Y . Blow up of solutions to semilinear wave equations with critical exponent in high dimensions. Chinese Annals of Mathematics, 2007, 28 (2): 205- 212
doi: 10.1007/s11401-005-0205-x
|
15 |
John F . Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Mathematica, 1979, 28 (1/3): 235- 268
|
16 |
Glassey R T . Finite-time blow-up for solutions of nonlinear wave equations. Mathematische Zeitschrift, 1981, 177 (3): 323- 340
doi: 10.1007/BF01162066
|
17 |
Sideris T C . Nonexistence of global solutions to semilinear wave equations in high dimensions. Journal of Differential Equations, 1984, 52 (3): 378- 406
doi: 10.1016/0022-0396(84)90169-4
|
18 |
Voroshilov A A , Kilbas A A . The cauchy problem for the diffusion-wave equation with the caputo partial derivative. Differential Equations, 2006, 42 (5): 638- 649
doi: 10.1134/S0012266106050041
|
19 |
Zhang Q , Sun H . The blow-up and global existence of solutions of cauchy problems for a time fractional diffusion equation. Topological Methods in Nonlinear Analysis, 2015, 46 (1): 69- 92
doi: 10.12775/TMNA.2015.038
|
20 |
D'Abbicco M , Ebert M R , Picon T H . The critical exponent(s) for the semilinear fractional diffusive equation. Journal of Fourier Analysis and Applications, 2019, 25 (3): 696- 731
|
21 |
Duong P T , Mezadek M K , Reissig M . Global existence for semi-linear structurally damped σ-evolution models. Journal of Mathematical Analysis and Applications, 2015, 431 (1): 569- 596
|
22 |
Runst T , Sickel W . Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. New York: Walter de Gruyter, 1996
|
23 |
Kilbas A A , Srivastava H M , Trujillo J J . Theory and Applications of Fractional Differential Equations. New York: Elsevier Science Inc, 2006
|
24 |
肖常旺, 郭飞. 一类半线性波动方程的适定性. 数学物理学报, 2020, 40A (6): 1568- 1589
doi: 10.3969/j.issn.1003-3998.2020.06.012
|
|
Xiao C W , Guo F . Global existence and blowup phenomena for a semilinear wave equation with time-dependent damping and mass in exponentially weighted spaces. Acta Math Sci, 2020, 40A (6): 1568- 1589
doi: 10.3969/j.issn.1003-3998.2020.06.012
|
25 |
李大潜, 周忆. 非线性波动方程. 上海: 上海科学技术出版社, 2016
|
|
Li D Q , Zhou Y . Nonlinear Wave Equations. Shanghai: Shanghai Scientific and Technical Publisher, 2016
|