数学物理学报 ›› 2022, Vol. 42 ›› Issue (6): 1682-1704.
收稿日期:
2021-12-03
出版日期:
2022-12-26
发布日期:
2022-12-16
通讯作者:
刘范琴
E-mail:chenlinshutong@jxnu.edu.cn;fanqliu@163.com
作者简介:
陈琳, E-mail: Received:
2021-12-03
Online:
2022-12-26
Published:
2022-12-16
Contact:
Fanqin Liu
E-mail:chenlinshutong@jxnu.edu.cn;fanqliu@163.com
摘要:
该文考虑分数阶临界Choquard方程
中图分类号:
陈琳,刘范琴. 分数阶临界Choquard方程的多解[J]. 数学物理学报, 2022, 42(6): 1682-1704.
Lin Chen,Fanqin Liu. Multiplicity of Solutions to Fractional Critical Choquard Equation[J]. Acta mathematica scientia,Series A, 2022, 42(6): 1682-1704.
1 |
Alves C O , Ding Y H . Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinear. J Math Anal Appl, 2003, 279 (2): 508- 521
doi: 10.1016/S0022-247X(03)00026-X |
2 |
Ambrosetti A , Brezis H , Cerami G . Combined effects of concave and convex nonlinearities in some elliptic problems. J Funct Anal, 1994, 122 (2): 519- 543
doi: 10.1006/jfan.1994.1078 |
3 | Ambrosio V . Nonlinear Fractional Schrödinger Equations in Rn. Swizerland: Birkhäuser, 2021, |
4 |
Bahri A , Coron J M . On a nonlinear elliptic equation involving the Sobolev exponent: the effect of the topology of the domain. Comm Pure Appl Math, 1988, 41, 253- 294
doi: 10.1002/cpa.3160410302 |
5 |
Benci V , Cerami G . Positive solutions of some nonlinear elliptic problems in exterior domains. Arch Rational Mech Anal, 1987, 99, 283- 300
doi: 10.1007/BF00282048 |
6 |
Benci V , Cerami G . The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch Rational Mech Anal, 1991, 114, 79- 93
doi: 10.1007/BF00375686 |
7 |
Benci V , Cerami G . Multiple positive solutions of some elliptic problems via the Morse theorem and the domain topology. Calc Var Partial Differ Equ, 1994, 2, 29- 48
doi: 10.1007/BF01234314 |
8 |
Brezis H , Lieb E . A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88 (3): 486- 490
doi: 10.1090/S0002-9939-1983-0699419-3 |
9 |
Cerami G , Passaseo D . Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with rich topology. Nonlinear Anal, 1992, 18 (2): 109- 119
doi: 10.1016/0362-546X(92)90089-W |
10 |
Cerami G , Passaseo D . Existence and multiplicity for semilinear elliptic Dirichlet problems in exterior domains. Nonlinear Anal, 1995, 24 (11): 1533- 1547
doi: 10.1016/0362-546X(94)00116-Y |
11 |
Cingolani S , Clapp M , Secchi S . Multiple soluions to a magnetic nonlinear Choquard equation. Z Angew Math Phys, 2012, 63, 233- 248
doi: 10.1007/s00033-011-0166-8 |
12 | Coron J M . Topologie et cas limite des injections de Sobolev. C R Acad Sci Paris Sér I, 1984, 299, 209- 212 |
13 | Figueiredo G M, Bisci G M, Servadei R. The effect of the domain topology on the number of solutions of fractional Laplace problems. Calc Var Partial Differ Equ, 2018, 57: Article number 103 |
14 |
Gao F S , Da Silva E D , Yang M B , Zhou J Z . Existence of solutions for critical Choquard equations via the concentration compactness method. Proc R Soc Edinb Sect A Math, 2020, 150 (2): 921- 954
doi: 10.1017/prm.2018.131 |
15 |
Gao F S , Yang M B . On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation. Sci China Math, 2018, 61 (7): 1219- 1242
doi: 10.1007/s11425-016-9067-5 |
16 | Ghimenti M, Pagliardini D. Multiple positive solutions for a slightly subcritical Choquard problem on bounded domains. Calc Var Partial Differ Equ, 2019, 58: Article number 167 |
17 | Goel D . The effect of topology on the number of positive solutions of elliptic equation involving Hardy-Littlewood-Sobolev critical exponent. Topol Methods Nonlinear Anal, 2019, 54, 751- 771 |
18 |
Goel D , Rădulescu V D , Sreenadh K . Coron problem for nonlocal equations involving Choquard Nonlinearity. Adv Nonlinear Stud, 2020, 20 (1): 141- 161
doi: 10.1515/ans-2019-2064 |
19 | Goel D , Sreenadh K . Critical growth elliptic problems involving Hardy-Littlewood-Sobolev critical exponent in non-contractible domains. Adv Nonlinear Anal, 2020, 9, 803- 835 |
20 | Lieb E H, Loss M. Analysis. Providence: Proc Amer Math Soc, 2001 |
21 |
Lions P L . The Choquard equation and related questions. Nonlinear Anal, 1980, 4, 1063- 1072
doi: 10.1016/0362-546X(80)90016-4 |
22 | Lusternik L , Schnirelman L . Methodes Topologiques dans les Problémes Variationnels. Paris: Hermann and Cie, 1934 |
23 | Molica Bisci G , Servadei R . Lower semicontinuity of functionals of fractional type and applications to nonlocal equations with critical Sobolev exponent. Adv Differ Equ, 2015, 20, 635- 660 |
24 |
Moroz V , Van Schaftingen J . Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265, 153- 184
doi: 10.1016/j.jfa.2013.04.007 |
25 | Moroz V , Van Schaftingen J . Existence of groundstates for a class of nonlinear Choquard equations. Trans Amer Math Soc, 2015, 367 (9): 6557- 6579 |
26 |
Moroz V , Van Schaftingen J . Semi-classical states for the Choquard equation. Calc Var Partial Differ Equ, 2015, 52, 199- 235
doi: 10.1007/s00526-014-0709-x |
27 |
Moroz V , Van Schaftingen J . A guide to the Choquard equation. J Fixed Point Theory Appl, 2017, 19 (1): 773- 813
doi: 10.1007/s11784-016-0373-1 |
28 |
Mukherjee T , Sreenadh K . Fractional Choquard equation with critical nonlinearities. Nonlinear Differ Equ Appl, 2017, 24, 63
doi: 10.1007/s00030-017-0487-1 |
29 |
Palatucci G , Pisante A . Improved Sobolev embeddings, profile decomposition and concentration compactness fractional Sobolev space. Calc Var Partial Differ Equ, 2014, 50, 799- 829
doi: 10.1007/s00526-013-0656-y |
30 | Pekar S . Untersuchung über die Elektronentheorie der Kristalle. Berlin: Akademie Berlag, 1954 |
31 |
Rey O . A multiplicity result for a variational problem with lack of compactness. Nonlinear Anal, 1989, 13, 1241- 1249
doi: 10.1016/0362-546X(89)90009-6 |
32 |
Servadei R , Valdinoci E . Variational methods for non-local operators of elliptic type. Discrete Contin Dyn Syst, 2013, 33, 2105- 2137
doi: 10.3934/dcds.2013.33.2105 |
33 | Servadei R , Valdinoci E . A Brezis-Nirenberg result for the fractional laplacian. Trans Amer Math Soc, 2015, 367, 67- 102 |
34 |
Shen Z , Gao F S , Yang M B . Ground states for nonlinear fractional Choquard equations with general nonlinearities. Math Methods Appl Sci, 2016, 39, 4082- 4098
doi: 10.1002/mma.3849 |
35 | Willem M. Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications. Boston: Birkhäuser, 1996 |
36 |
Yang J F , Zhu L P . Multiple solutions to Choquard equation in exterior domain. J Math Anal Appl, 2022, 507, 125726
doi: 10.1016/j.jmaa.2021.125726 |
[1] | 尚旭东,张吉慧. 一类非线性Choquard方程基态解的存在性[J]. 数学物理学报, 2022, 42(3): 749-759. |
[2] | 张伟强,赵培浩. 分数阶Choquard方程正解的存在性、多重性和集中现象[J]. 数学物理学报, 2022, 42(2): 470-490. |
[3] | 吉蕾,廖家锋. 一类带临界指数的Kirchhoff型问题正基态解的存在性[J]. 数学物理学报, 2022, 42(2): 418-426. |
[4] | 杨慧,韩玉柱. 一类抛物型Kirchhoff方程解的爆破性质[J]. 数学物理学报, 2021, 41(5): 1333-1346. |
[5] | 张金国,杨登允. 含Hardy型势的临界Grushin算子方程解的存在性和渐近估计[J]. 数学物理学报, 2021, 41(4): 997-1012. |
[6] | 杨先勇,唐先华,顾光泽. 带有临界增长或超临界增长的分数阶Choquard方程解的存在性和多重性[J]. 数学物理学报, 2021, 41(3): 702-722. |
[7] | 冯晓晶. 带有双临界项的薛定谔-泊松系统非平凡解的存在性[J]. 数学物理学报, 2020, 40(6): 1590-1598. |
[8] | 吉蕾,廖家锋. 一类带临界指数的非齐次Kirchhoff型问题第二个正解的存在性[J]. 数学物理学报, 2019, 39(5): 1094-1101. |
[9] | 张晶. 一类次临界Bose-Einstein凝聚型方程组的渐近收敛行为和相位分离[J]. 数学物理学报, 2019, 39(3): 441-450. |
[10] | 彭小明,郑筱筱,尚亚东. 具衰退记忆的四阶拟抛物方程的长时间行为[J]. 数学物理学报, 2019, 39(1): 114-124. |
[11] | 廖家锋, 李红英. 带Sobolev临界指数的超线性Kirchhoff型方程正解的存在性与多解性[J]. 数学物理学报, 2017, 37(6): 1119-1124. |
[12] | 裴瑞昌, 张吉慧, 马草川. 一类超线性(p,2)-拉普拉斯Dirichlet问题的非平凡解[J]. 数学物理学报, 2017, 37(1): 92-101. |
[13] | 吴元泽, 吴宗芳, 刘增. 关于含非齐次Dirichlet边值的Brézis-Nirenberg问题的研究[J]. 数学物理学报, 2015, 35(6): 1025-1043. |
[14] | 樊自安. 包含Caffarelli-Kohn-Nirenberg临界指数的非齐次椭圆方程[J]. 数学物理学报, 2015, 35(5): 884-894. |
[15] | 张彦军, 马巧珍. 非经典反应扩散方程在R3中全局吸引子的存在性[J]. 数学物理学报, 2015, 35(2): 294-305. |
|