数学物理学报 ›› 2022, Vol. 42 ›› Issue (6): 1682-1704.

• 论文 • 上一篇    下一篇

分数阶临界Choquard方程的多解

陈琳(),刘范琴*()   

  1. 江西师范大学数学与统计学院, 南昌 330022
  • 收稿日期:2021-12-03 出版日期:2022-12-26 发布日期:2022-12-16
  • 通讯作者: 刘范琴 E-mail:chenlinshutong@jxnu.edu.cn;fanqliu@163.com
  • 作者简介:陈琳, E-mail: chenlinshutong@jxnu.edu.cn

Multiplicity of Solutions to Fractional Critical Choquard Equation

Lin Chen(),Fanqin Liu*()   

  1. School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022
  • Received:2021-12-03 Online:2022-12-26 Published:2022-12-16
  • Contact: Fanqin Liu E-mail:chenlinshutong@jxnu.edu.cn;fanqliu@163.com

摘要:

该文考虑分数阶临界Choquard方程 {(Δ)su=λ|u|q2u+(Ω|u(y)|2μ,s|xy|μdy)|u|2μ,s2u,xΩ,u=0,xRNΩ 多解的存在性, 其中ΩRN是具有光滑边界的有界开集, N>2s, s(0,1), 0<μ<N, λ是正实参数, q[2,2s), s=2NN2s是分数阶临界Sobolev指数, μ,s=2NμN2s是Hardy-Littlewood-Sobolev不等式意义下的临界指数.利用Lusternik-Schnirelman定理, 证明了当q=2N4q(2,2s)N>2s(q+2)q时, 存在ˉλ>0, 对λ(0,ˉλ), 方程至少有catΩ(Ω)个非平凡解.

关键词: Choquard方程, 临界指数, Lusternik-Schnirelman定理

Abstract:

In this paper, we are concerned with the multiplicity of solutions for the following fractional Laplacian problemwhere ΩRN is an open bounded set with continuous boundary, N>2s with s(0,1), λ is a real parameter, μ(0,N) and q[2,2s), where s=2NN2s, μ,s=2NμN2s. Using Lusternik-Schnirelman theory, there exists ˉλ>0 such that for any λ(0,ˉλ), the problem has at least catΩ(Ω) nontrivial solutions provided that q=2 and N4s or q(2,2s) and N>2s(q+2)q.

Key words: Choquard equation, Critical exponent, Lusternik-Schnirelman theory

中图分类号: 

  • O175.2