1 |
Wang C S , Chai H F , Lu Y C . Discrete-time quantum Bernoulli noises. J Math Phys, 2010, 51 (5): 53528
doi: 10.1063/1.3431028
|
2 |
Privault N . Stochastic analysis of Bernoulli processes. Probab Surv, 2008, 5 (1): 435- 483
|
3 |
Chen J S . Invariant states for a quantum Markov semigroup constructed from quantum Bernoulli noises. Open Syst Inf Dyn, 2018, 25 (4): 1850019
doi: 10.1142/S1230161218500191
|
4 |
Chen J S . Quantum Feller semigroup in terms of quantum Bernoulli noises. Stoch Dyn, 2021, 21 (4): 2150015
doi: 10.1142/S0219493721500155
|
5 |
Ren S L , Wang C S , Tang Y L . Quantum Bernoulli noises approach to Stochastic Schrödinger equation of exclusion type. J Math Phys, 2020, 61 (6): 063509
doi: 10.1063/1.5138370
|
6 |
Wang C S , Tang Y L , Ren S L . Weighted number operators on Bernoulli functionals and quantum exclusion semigroups. J Math Phys, 2019, 60 (11): 113506
doi: 10.1063/1.5120102
|
7 |
Wang C S , Ren S L , Tang Y L . Open quantum random walk in terms of quantum Bernoulli noise. Quantum Inf Process, 2018, 17 (3): 1- 14
|
8 |
Nourdin I , Peccati G , Reinert G . Stein's method and stochastic analysis of Rademacher functionals. Electron J Probab, 2010, 15 (55): 1703- 1742
|
9 |
Wang C . Higher-dimensional open quantum walk in environment of quantum Bernoulli noises. Stoch Dyn, 2022, 22 (1): 2250001
doi: 10.1142/S0219493722500010
|
10 |
Wang C , Wang C S . Higher-dimensional quantum walk in terms of quantum Bernoulli noises. Entropy, 2020, 22 (5): 504
doi: 10.3390/e22050504
|
11 |
Zheng G Q . Normal approximation and almost sure central limit theorem for non-symmetric Rademacher functionals. Stochastic Process Appl, 2017, 127 (5): 1622- 1636
doi: 10.1016/j.spa.2016.09.002
|
12 |
Wang C S , Ren S L , Tang Y L . A new limit theorem for quantum walk in terms of quantum Bernoulli noises. Entropy, 2020, 22 (4): 486
doi: 10.3390/e22040486
|
13 |
Wang C S , Ye X J . Quantum walk in terms of quantum Bernoulli noises. Quantum Inf Process, 2016, 15 (5): 1- 12
|
14 |
Segawa E , Suzuki A . Spectral mapping theorem of an abstract quantum walk. Quantum Inf Process, 2019, 18 (11): 333
doi: 10.1007/s11128-019-2448-6
|
15 |
韩琦, 郭婷, 殷世德, 陈芷禾. 直线上空间非齐次三态量子游荡的平稳测度. 数学物理学报, 2019, 39A (1): 133- 142
|
|
Han Q , Guo T , Yin S D , Chen Z H . The stationary measure of a space-inhomogeneous three-state quantum walk on the line. Acta Math Sci, 2019, 39A (1): 133- 142
|
16 |
林运国. 时间非齐次二态量子游荡的演化过程分析. 数学物理学报, 2021, 41 (4): 1097- 1110
doi: 10.3969/j.issn.1003-3998.2021.04.017
|
|
Lin Y G . The analysis of evolution process in a time-inhomogeneous two-state quantum walk. Acta Math Sci, 2021, 41 (4): 1097- 1110
doi: 10.3969/j.issn.1003-3998.2021.04.017
|
17 |
邱汶汶, 齐雅茹. 一类无界算子的二次数值域和谱. 数学物理学报, 2020, 40 (6): 1420- 1430
doi: 10.3969/j.issn.1003-3998.2020.06.002
|
|
Qiu W W , Qi Y R . The quadratic numerical range and the spectrum of some unbounded block operator matrices. Acta Math Sci, 2020, 40 (6): 1420- 1430
doi: 10.3969/j.issn.1003-3998.2020.06.002
|