Dimension Theory of Uniform Diophantine Approximation Related to Beta-Transformations
Wanlou Wu1(),Lixuan Zheng2,*()
1 School of Mathematics and Statistics, Jiangsu Normal University, Jiangsu Xuzhou 221116 2 Department of Statistics and Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320
Wanlou Wu,Lixuan Zheng. Dimension Theory of Uniform Diophantine Approximation Related to Beta-Transformations[J]. Acta mathematica scientia,Series A, 2022, 42(4): 978-1002.
Amou M , Bugeaud Y . Exponents of Diophantine approximation and expansions in integer bases. J Lond Math Soc, 2010, 81 (2): 297- 316
doi: 10.1112/jlms/jdp070
2
Besicovitch A . Sets of fractional dimensions (Ⅳ): On rational approximation to real numbers. J London Math Soc, 1934, 9 (2): 126- 131
3
Bugeaud Y . Distribution Modulo One and Diophantine Approximation. Cambridge: Cambridge University Press, 2012
4
Bugeaud Y , Liao L . Uniform Diophantine approximation related to $b$-ary and $\beta$-expansions. Ergodic Theory Dynam Systems, 2016, 36 (2): 1- 22
5
Bugeaud Y , Wang B . Distribution of full cylinders and the Diophantine properties of the orbits in $\beta$-expansions. J Fractal Geom, 2014, 1 (2): 221- 241
doi: 10.4171/JFG/6
6
Dirichlet L . Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einigen Anwendungen auf die Theorie der Zahlen. SB Preuss Akad Wiss, 1842, 1842: 93- 95
7
Li B , Wu J . Beta-expansion and continued fraction expansion over formal Laurent series. Finite Fields Appl, 2008, 14 (3): 635- 647
doi: 10.1016/j.ffa.2007.09.005
8
Hill R , Velani S . The ergodic theory of shrinking targets. Invent Math, 1995, 119 (1): 175- 198
doi: 10.1007/BF01245179
9
Jarník V . Diophantische approximationen und Hausdorffsches mass. Rec Math Moscou, 1929, 36: 371- 382
10
Khintchine A . Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen. Math Ann, 1924, 92 (1): 115- 125
11
Kleinbock D, Konstantoulas I, Richter F K. Zero-one laws for eventually always hitting points in mixing systems. 2019, arXiv: 1904.08584
12
Legendre A M . Essai sur la Théorie des Nombres. Cambridge: Cambridge University Press, 2009
13
Fan A , Wang B . On the lengths of basic intervals in beta expansions. Nonlinearity, 2012, 25 (5): 1329- 1343
doi: 10.1088/0951-7715/25/5/1329
14
Parry W . On the $\beta$-expansions of real numbers. Acta Math Acad Sci Hungar, 1960, 11: 401- 416
15
Philipp W . Some metrical theorems in number theory. Pacific J Math, 1967, 20: 109- 127
doi: 10.2140/pjm.1967.20.109
16
Rényi A . Representations for real numbers and their ergodic properties. Acta Math Acad Sci Hungar, 1957, 8: 477- 493
doi: 10.1007/BF02020331
17
Shen L , Wang B . Shrinking target problems for beta-dynamical system. Sci China Math, 2013, 56 (1): 91- 104
doi: 10.1007/s11425-012-4478-8
18
Waldschmidt M. Recent Advances in Diophantine Approximation//Goldfeld D, Gorgenson J, Jones P, et al. Number theory, Analysis and Geometry. New York: Springer, 2012
19
Zheng L . Diophantine approximation and run-length function on $\beta$ -expansions. J Number Theory, 2018, 202: 60- 90