数学物理学报 ›› 2022, Vol. 42 ›› Issue (4): 1209-1226.
收稿日期:
2021-01-27
出版日期:
2022-08-26
发布日期:
2022-08-08
通讯作者:
赵洪涌
E-mail:kwang@nuaa.edu.cn;hyzho1967@126.com
作者简介:
王凯, E-mail: 基金资助:
Received:
2021-01-27
Online:
2022-08-26
Published:
2022-08-08
Contact:
Hongyong Zhao
E-mail:kwang@nuaa.edu.cn;hyzho1967@126.com
Supported by:
摘要:
该文研究了一类时滞反应扩散登革热传染病模型行波解的存在性与不存在性. 首先, 利用辅助系统并结合Schauder不动点定理, 证明了当基本再生数
中图分类号:
王凯,赵洪涌. 一类具有时滞的反应扩散登革热传染病模型的行波解[J]. 数学物理学报, 2022, 42(4): 1209-1226.
Kai Wang,Hongyong Zhao. Traveling Wave of a Reaction-Diffusion Dengue Epidemic Model with Time Delays[J]. Acta mathematica scientia,Series A, 2022, 42(4): 1209-1226.
1 |
Bhatt S , Gething P W , Brady O J , et al. The global distribution and burden of dengue. Nature, 2013, 496: 504- 507
doi: 10.1038/nature12060 |
2 |
Brady O J , Gething P W , Bhatt S , et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Neglected Tropical Disease, 2012, 6: e1760
doi: 10.1371/journal.pntd.0001760 |
3 |
Zhang L , Wang S M . A time-periodic and reaction-diffusion Dengue fever model with extrinsic incubation period and crowding effects. Nonlinear Anal RWA, 2020, 51: 102988
doi: 10.1016/j.nonrwa.2019.102988 |
4 | Becker N, Petric D, Zgomba M, et al. Mosquitoes and Their Control (Second Edition). New York: Springer-Verlag, 2010 |
5 |
Esteva L , Vargas C . Analysis of a dengue disease transmission model. Math Biosci, 1998, 150: 131- 151
doi: 10.1016/S0025-5564(98)10003-2 |
6 |
Lou Y , Zhao X-Q . A reaction-diffusion malaria model with incubation period in the vector population. J Math Boil, 2011, 62: 543- 568
doi: 10.1007/s00285-010-0346-8 |
7 |
Wang J L , Chen Y M . Threshold dynamics of a vector-borne disease model with spatial structure and vector-bias. Appl Math Lett, 2020, 100: 106052
doi: 10.1016/j.aml.2019.106052 |
8 |
Wang W , Zhao X-Q . A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J Appl Math, 2011, 71: 147- 168
doi: 10.1137/090775890 |
9 |
Wu R , Zhao X-Q . A reaction-diffusion model of vector-borne disease with periodic delays. J Nonlinear Sci, 2019, 29: 29- 64
doi: 10.1007/s00332-018-9475-9 |
10 | Ruan S. Spatial-Temporal Dynamics in Nonlocal Epidemiological Models, in: Mathematics for Life Science and Medicine. Berlin: Springer, 2007: 97–122 |
11 |
Berestycki H , Hamel F . Front propagation in periodic excitable media. Commun Pure Appl Math, 2002, 55: 949- 1032
doi: 10.1002/cpa.3022 |
12 |
Ducrot A , Magal P , Ruan S . Travelling wave solutions in mltigroup age-structured epidemic models. Arch Rational Mech Anal, 2010, 195: 311- 331
doi: 10.1007/s00205-008-0203-8 |
13 | Huang W Z . A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems. J Differential Equations, 2017, 260: 2190- 2224 |
14 |
邓栋, 李燕. 一类带治疗项的非局部扩散SIR传染病模型的行波解. 数学物理学报, 2020, 40A (1): 72- 102
doi: 10.3969/j.issn.1003-3998.2020.01.008 |
Deng D , Li Y . Traveling waves in a nonlocal dispersal SIR epidemic model with treatment. Acta Math Sci, 2020, 40A (1): 72- 102
doi: 10.3969/j.issn.1003-3998.2020.01.008 |
|
15 |
Wang Z-C , Li W-T , Ruan S . Travelling wave fronts in reaction- diffusion systems with spatio-temporal delays. J Differential Equations, 2006, 222: 185- 232
doi: 10.1016/j.jde.2005.08.010 |
16 |
Zhang T . Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations. J Differential Equations, 2017, 262: 4724- 4770
doi: 10.1016/j.jde.2016.12.017 |
17 |
Zhang T , Wang W , Wang K . Minimal wave speed for a class of non-cooperative diffusion-reaction system. J Differential Equations, 2016, 260: 2763- 2791
doi: 10.1016/j.jde.2015.10.017 |
18 |
Zhao L , Wang Z-C , Ruan S . Traveling wave solutions in a two-group epidemic model with latent period. Nonlinearity, 2017, 30: 1287- 1325
doi: 10.1088/1361-6544/aa59ae |
19 |
邹霞, 吴事良. 一类具有非线性发生率与时滞的非局部SIR模型的行波解. 数学物理学报, 2018, 38A (3): 496- 513
doi: 10.3969/j.issn.1003-3998.2018.03.008 |
Zou X , Wu S L . Traveling waves in a nonlocal dispersal SIR epidemic model with delay and nonlinear incidence. Acta Math Sci, 2018, 38A (3): 496- 513
doi: 10.3969/j.issn.1003-3998.2018.03.008 |
|
20 | Zhao L , Zhang L , Huo H . Traveling wave solutions of a diffusive SEIR epidemic model with nonlinear incidence rate. Taiwanese J Math, 2019, 23: 951- 980 |
21 |
Wang W , Zhao X-Q . Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J Appl Dyn Syst, 2012, 11: 1652- 1673
doi: 10.1137/120872942 |
22 |
Zhao X-Q . Basic reproduction ratios for periodic compartmental models with time delay. J Dyn Differ Equ, 2017, 29: 67- 82
doi: 10.1007/s10884-015-9425-2 |
23 |
van den Driessche P , Watmough J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 2002, 180: 29- 48
doi: 10.1016/S0025-5564(02)00108-6 |
24 |
Hsu C-H , Yang T-S . Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models. Nonlinearity, 2013, 26: 121- 139
doi: 10.1088/0951-7715/26/1/121 |
25 |
Tian B , Yuan R . Traveling waves for a diffusive SEIR epidemic model with non-local reaction. Appl Math Model, 2017, 50: 432- 449
doi: 10.1016/j.apm.2017.05.040 |
26 |
Ma S W . Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J Differential Equations, 2001, 171: 294- 314
doi: 10.1006/jdeq.2000.3846 |
27 | Zeidler E. Nonlinear Functional Analysis and its Applications I. New York: Springer, 1986 |
28 |
Denu D , Ngoma S , Salako R B . Existence of traveling wave solutions of a deterministic vector-host epidemic model with direct transmission. J Math Anal Appl, 2020, 487: 123995
doi: 10.1016/j.jmaa.2020.123995 |
29 | Wang Z-C , Wu J-H . Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission. Proc R Soc Lond Ser A Math Phys Eng Sci, 2010, 466: 237- 261 |
[1] | 何泽荣,窦艺萌,韩梦杰. 具有尺度等级和时滞的种群系统的最优边界控制[J]. 数学物理学报, 2022, 42(3): 867-880. |
[2] | 张太雷,刘俊利,韩梦洁. 具有时滞和季节性的炭疽模型的动力学分析[J]. 数学物理学报, 2022, 42(3): 851-866. |
[3] | 程红梅,袁荣. 移动环境下带有非局部扩散项和时滞的反应扩散方程的强迫行波解[J]. 数学物理学报, 2022, 42(2): 491-501. |
[4] | 张道祥,李奔,陈丹丹,林雅婷,王鑫梅. 带有经济效益的时滞分数阶微分-代数捕食-被捕食系统的Hopf分岔[J]. 数学物理学报, 2022, 42(2): 570-582. |
[5] | 朱凯旋,谢永钦,梅鑫钰,邓习军. 带有时滞项的超三次弱阻尼波方程一致吸引子的存在性[J]. 数学物理学报, 2022, 42(1): 86-102. |
[6] | 王长有,李楠,蒋涛,杨强. 一类具有时滞及反馈控制的非自治非线性比率依赖食物链模型[J]. 数学物理学报, 2022, 42(1): 245-268. |
[7] | 朱敏,刘梦丽. 一类具变系数交错扩散的登革热模型[J]. 数学物理学报, 2022, 42(1): 201-215. |
[8] | 孙悦,张道祥,周文. 恐惧效应对带时滞的反应扩散捕食系统的稳定区间的影响[J]. 数学物理学报, 2021, 41(6): 1980-1992. |
[9] | 吴鑫,袁荣,马兆海. 非局部扩散Holling-Tanner捕食者-食饵系统的临界与非临界行波解分析[J]. 数学物理学报, 2021, 41(6): 1705-1717. |
[10] | 张再云,刘振海,邓又军. 具有时变时滞和速度相关材料密度的非线性粘弹性方程的整体存在性和一般衰减性[J]. 数学物理学报, 2021, 41(6): 1684-1704. |
[11] | 仉志余,赵成,李宇宇. 时间尺度上带超线性中立项的二阶时滞动力方程的振动性[J]. 数学物理学报, 2021, 41(6): 1838-1852. |
[12] | 孙丹丹,李盈科,滕志东,张太雷. 具有年龄结构的麻疹传染病模型的稳定性分析[J]. 数学物理学报, 2021, 41(6): 1950-1968. |
[13] | 覃桂茳,杨甲山. 具拟线性中立项的二阶变时滞动力方程的振动定理[J]. 数学物理学报, 2021, 41(5): 1492-1503. |
[14] | 王晶囡,杨德中. 具时滞扩散效应的病原体-免疫模型的稳定性及分支[J]. 数学物理学报, 2021, 41(4): 1204-1217. |
[15] | 丰利香,王德芬. 具有隔离和不完全治疗的传染病模型的全局稳定性[J]. 数学物理学报, 2021, 41(4): 1235-1248. |
|