数学物理学报 ›› 2022, Vol. 42 ›› Issue (4): 1186-1208.

• 论文 • 上一篇    下一篇

空间非齐次白噪声驱动的分数阶随机热方程的矩估计

刘俊峰1,*(),毛磊2(),王志3()   

  1. 1 南京审计大学统计与数据科学学院 南京 211815
    2 陆军工程大学基础部 南京 211100
    3 宁波工程学院理学院 浙江宁波 315211
  • 收稿日期:2021-01-29 出版日期:2022-08-26 发布日期:2022-08-08
  • 通讯作者: 刘俊峰 E-mail:jordanjunfeng@163.com;maolei1981@126.com;wangzhi1006@hotmail.com
  • 作者简介:毛磊, E-mail: maolei1981@126.com|王志, E-mail: wangzhi1006@hotmail.com
  • 基金资助:
    国家自然科学基金(11701304);教育部人文社会科学基金(18YJCZH101);江苏高校自然科学基金重大项目(18KJA110002);宁波市自然科学基金(2019A610041);王宽诚教育基金会

Moment Bounds for the Fractional Stochastic Heat Equation with Spatially Inhomogeneous White Noise

Junfeng Liu1,*(),Lei Mao2(),Zhi Wang3()   

  1. 1 School of Statistics and Data Science, Nanjing Audit University, Nanjing, 211815
    2 Department of General Education, Army Engineering University of PLA, Nanjing 211100
    3 School of Sciences, Ningbo University of Technology, Zhejiang Ningbo 315211
  • Received:2021-01-29 Online:2022-08-26 Published:2022-08-08
  • Contact: Junfeng Liu E-mail:jordanjunfeng@163.com;maolei1981@126.com;wangzhi1006@hotmail.com
  • Supported by:
    the NSFC(11701304);the Humanities and Social Sciences Foundation of the Ministry of Education(18YJCZH101);the Major Research Plan of NSF of the Jiangsu Higher Education Institutions(18KJA110002);the NSF of Ningbo Municipality(2019A610041);the Wong Kuancheng Education Foundation

摘要:

该文主要研究如下伴有Cauchy初值条件的分数阶随机热方程 其中$\alpha\in(1, 2]$为算子${\cal D}_{\delta}^{\alpha}$的阶数, $\delta (|\delta|\leq2-\alpha)$称为偏度参数, 扩散系数$g(\cdot):{\Bbb R} \mapsto{\Bbb R} $是非随机的可测函数, $\frac{\partial^2}{\partial t\partial x}w_\rho(t, x)$表示空间非齐次白噪声, 在关于非齐次布朗单$w_\rho(t, x)$催化测度$\rho$的适当假设下, 证明了该方程解的存在性、唯一性和Hölder连续性. 同时, 也证明了方程解的矩估计.

关键词: 分数阶随机热方程, 空间非齐次白噪声, Hölder连续性, 矩估计

Abstract:

In this paper, we will study a class of fractional stochastic heat equation of the form with $T>0$, where ${\cal D}_\delta^\alpha$ denotes a nonlocal fractional differential operator with $\alpha\in(1, 2]$ and $|\delta|\leq2-\alpha$, and $\frac{\partial^2}{\partial t\partial x}w_\rho(t, x)$ is a spatially inhomogeneous white noise. Under some mild assumptions on the catalytic measure of the inhomogeneous Brownian sheet $w_\rho(t, x)$, we prove the existence, uniqueness and Hölder regularity of the solution. Upper and lower moment bounds for the solution are also derived.

Key words: Fractional stochastic heat equation, Spatially inhomogeneous white noise, Hölder regularity, Moment bounds

中图分类号: 

  • O211.63