1 |
Journals Doshi B T . Continuous-time control of Markov processes on an arbitrary state space: discounted rewards. Ann Stat, 1976, 4: 1219- 1235
|
2 |
Dynkin E B , Yushkevich A A . Controlled Markov Processes. New York: Springer, 1979
|
3 |
Feinberg E A . Continuous-time jump Markov decision processes: A discrete-event approach. Math Oper Res, 2004, 29: 492- 524
doi: 10.1287/moor.1040.0089
|
4 |
Guo X P . Continuous-time Markov decision processes with discounted rewards: The case of Polish spaces. Math Oper Res, 2007, 32 (1): 73- 87
doi: 10.1287/moor.1060.0210
|
5 |
Guo X P . Constrained optimization for average cost continuous-time Markov decision processes. IEEE Trans Autom Control, 2007, 52 (6): 1139- 1143
doi: 10.1109/TAC.2007.899040
|
6 |
Guo X P , Hernández-Lerma O . Continuous-time Markov Decision Processes: Theory and Applications. Berlin: Springer, 2009
|
7 |
Guo X P , Song X Y . Discounted continuous-time constrained Markov decision processes in Polish spaces. Ann Appl Probab, 2011, 21 (5): 2016- 2049
|
8 |
Hernández-Lerma O , Lasserre J B . Discrete-Time Markov Control Processes. New York: Springer, 1996
|
9 |
Hernández-Lerma O , Lasserre J B . Further Topics on Discrete-Time Markov Control Processes. New York: Springer, 1999
|
10 |
Puterman M L . Markov Decision Processes. New York: Wiley, 1994
|
11 |
Feinberg E A , Shwartz A . Markov decision models with weighted discounted criteria. Math Oper Res, 1994, 19 (1): 152- 168
doi: 10.1287/moor.19.1.152
|
12 |
González-Hernández J , López-Martínez R R , Pérez-Hernández J R . Markov control processes with randomized discounted cost. Math Methods Oper Res, 2007, 65: 27- 44
doi: 10.1007/s00186-006-0092-2
|
13 |
Wu X , Guo X P . First passage optimality and variance minimization of Markov decision processes with varying discount factors. J Appl Probab, 2015, 52 (2): 441- 456
doi: 10.1239/jap/1437658608
|
14 |
Wu X , Zhang J Y . Finite approximation of the first passage models for discrete-time Markov decision processes with varying discount factors. Discrete Event Dyn Syst, 2016, 26 (4): 669- 683
doi: 10.1007/s10626-014-0209-3
|
15 |
Hinderer K . Foundations of Non Stationary Dynamic Programming with Discrete Time Parameter. New York: Springer, 1970
|
16 |
Ye L E , Guo X P . Continuous-time Markov decision processes with state-dependent discount factors. Acta Appl Math, 2012, 121: 5- 27
doi: 10.1007/s10440-012-9669-3
|
17 |
Bertsekas D , Tsitsiklis J . Neuro-Dynammic Programming. Boston: Athena Scientific, 1996
|
18 |
Cavazos-Cadena R . Finite-state approximations for denumerable state discounted Markov decision processes. Appl Math Optim, 1986, 14: 1- 26
doi: 10.1007/BF01442225
|
19 |
Dufour F , Prieto-Rumeau T . Finite linear programming approximations of constrained discounted Markov decision processes. SIAM J Control Optim, 2013, 51 (2): 1298- 1324
doi: 10.1137/120867925
|
20 |
Wu X , Guo X P . Convergence of Markov decision processes with constraints and state-action dependent discount factors. Sci China Math, 2020, 63 (1): 167- 182
doi: 10.1007/s11425-017-9292-1
|
21 |
Saldi N , Linder T , Yuksel S . Asymptotic optimality and rates of convergence of quantized stationary policies in stochastic control. IEEE Transactions on Automatic Control, 2014, 60 (2): 553- 558
|
22 |
Saldi N , Linder T , Yuksel S . Near optimality of quantized policies in stochastic control under weak continuity conditions. J Math Anal Appl, 2016, 435: 321- 337
doi: 10.1016/j.jmaa.2015.10.008
|
23 |
Lund R B , Meyn S P , Tweedie R L . Computable exponential convergence rates for stochastically ordered Markov processes. Ann Appl Probab, 1996, 6: 218- 237
|