数学物理学报 ›› 2022, Vol. 42 ›› Issue (2): 605-620.
袁功林1(),吴宇伦1,*(),PhamHongtruong2()
收稿日期:
2021-03-03
出版日期:
2022-04-26
发布日期:
2022-04-18
通讯作者:
吴宇伦
E-mail:glyuan@gxu.edu.cn;wuyulun@st.gxu.edu.cn;shanghaichina888@yahoo.com
作者简介:
袁功林, E-mail: 基金资助:
Gonglin Yuan1(),Yulun Wu1,*(),Hongtruong Pham2()
Received:
2021-03-03
Online:
2022-04-26
Published:
2022-04-18
Contact:
Yulun Wu
E-mail:glyuan@gxu.edu.cn;wuyulun@st.gxu.edu.cn;shanghaichina888@yahoo.com
Supported by:
摘要:
该文提出了一种求解图像恢复问题和无约束优化问题的改进的共轭梯度算法, 其中共轭梯度参数是修改过的HS和DY方法的共轭参数的凸组合形式, 新提出的共轭梯度参数比起经典的参数还包含了函数的信息. 该方法在不使用任何线性搜索技术的情况下, 就可以满足充分下降的性质. 此外, 在一定合理条件下, 该文证明了在非单调线性搜索下新方法的全局收敛性. 最后, 在无约束优化和图像恢复问题上的实验表明, 新方法与其他共轭梯度算法相比, 具有良好的竞争力和应用前景.
中图分类号:
袁功林,吴宇伦,PhamHongtruong. 基于非单调线搜索的HS-DY形共轭梯度方法及在图像恢复中的应用[J]. 数学物理学报, 2022, 42(2): 605-620.
Gonglin Yuan,Yulun Wu,Hongtruong Pham. A Modified HS-DY-Type Method with Nonmonotone Line Search for Image Restoration and Unconstrained Optimization Problems[J]. Acta mathematica scientia,Series A, 2022, 42(2): 605-620.
表 1
三种方法的CPU时间"
25%噪音浓度 | Lena | Barbara | Man | Baboom | 合计 |
方法1 | 6.016 | 31.188 | 7.781 | 7.281 | 52.266 |
方法4 | 6.563 | 33.094 | 8.641 | 7.75 | 56.048 |
方法5 | 6.359 | 33.578 | 8.859 | 7.515 | 56.311 |
50%噪音浓度 | Lena | Barbara | Man | Baboom | 合计 |
方法1 | 15.016 | 69.453 | 18.5 | 16.984 | 119.953 |
方法4 | 15.578 | 71.39 | 19.203 | 18.219 | 124.39 |
方法5 | 16.078 | 70.234 | 18.703 | 17.906 | 122.921 |
75% 噪音浓度 | Lena | Barbara | Man | Baboom | 合计 |
方法1 | 25.718 | 127.641 | 27.438 | 26.75 | 207.547 |
方法4 | 26.953 | 129.938 | 28.828 | 27.406 | 213.125 |
方法5 | 27.719 | 127.609 | 28.313 | 27.125 | 210.766 |
1 |
Dai Y H . New properties of a nonlinear conjugate gradient method. Numerische Mathematik, 2001, 89 (1): 83- 98
doi: 10.1007/PL00005464 |
2 |
Grippo L , Lucidi S . A globally convergent version of the Polak-Ribière conjugate gradient method. Mathematical Programming, 1997, 78 (3): 375- 391
doi: 10.1007/BF02614362 |
3 | Nocedal J , Wright S . Numerical Optimization. Berlin: Springer, 2006 |
4 | Shi Z . Restricted PR conjugate gradient method and its global convergence. Advances in Mathematics, 2002, 31: 47- 55 |
5 | Yuan G L , Wang X B , Sheng Z . Family weak conjugate gradient algorithms and their convergence analysis for nonconvex functions. Numerical Algorithms, 2002, 84 (3): 935- 956 |
6 |
Wei Z X , Yao S W , Liu L . The convergence properties of some new conjugate gradient methods. Applied Mathematics and Computation, 2006, 183 (2): 1341- 1350
doi: 10.1016/j.amc.2006.05.150 |
7 |
Zhou W . A short note on the global convergence of the unmodified PRP method. Optimization Letters, 2013, 7 (6): 1367- 1372
doi: 10.1007/s11590-012-0511-7 |
8 | Yuan G L , Lu J Y , Wang Z . The PRP conjugate gradient algorithm with a modified WWP line search and its application in the image restoration problems. Applied Numerical Mathematics, 2002, 152: 1- 11 |
9 |
Zhou W , Wang F . A PRP-based residual method for large-scale monotone nonlinear equations. Applied Mathematics and Computation, 2015, 261: 1- 7
doi: 10.1016/j.amc.2015.03.069 |
10 |
Yuan G L , Wei Z X , Yang Y N . The global convergence of the Polak-Ribière-Polyak conjugate gradient algorithm under inexact line search for nonconvex functions. Journal of Computational and Applied Mathematics, 2019, 362: 262- 275
doi: 10.1016/j.cam.2018.10.057 |
11 |
Wen F , Yang X . Skewness of return distribution and coefficient of risk premium. Journal of Systems Science and Complexity, 2009, 22 (3): 360- 371
doi: 10.1007/s11424-009-9170-x |
12 | Andrei N . An unconstrained optimization test functions collection. Advanced Modeling Optimization, 2008, 10 (1): 147- 161 |
13 |
Gilbert J , Nocedal J . Global convergence properties of conjugate gradient methods for optimization. SIAM Journal on Optimization, 1992, 2 (1): 21- 42
doi: 10.1137/0802003 |
14 |
Wei Z X , Li G Y , Qi L Q . Global convergence of the Polak-Ribiere-Polyak conjugate gradient method with an Armijo-type inexact line search for nonconvex unconstrained optimization problems. Mathematics of Computation, 2008, 77 (264): 2173- 2193
doi: 10.1090/S0025-5718-08-02031-0 |
15 |
Yu G , Guan L , Wei Z . Globally convergent Polak-Ribière-Polyak conjugate gradient methods under a modified Wolfe line search. Applied Mathematics and Computation, 2009, 215 (8): 3082- 3090
doi: 10.1016/j.amc.2009.09.063 |
16 |
Zhang L , Zhou W , Li D . Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search. Numerische mathematik, 2006, 104 (4): 561- 572
doi: 10.1007/s00211-006-0028-z |
17 |
Li X , Ruan Q . A modified PRP conjugate gradient algorithm with trust region for optimization problems. Numerical Functional Analysis and Optimization, 2011, 32 (5): 496- 506
doi: 10.1080/01630563.2011.554948 |
18 |
Awwal A M , Kumam P , Wang L , et al. On the Barzilai-Borwein gradient methods with structured secant equation for nonlinear least squares problems. Optimization Methods and Software, 2020,
doi: 10.1080/10556788.2020.1855170 |
19 |
Grippo L , Lampariello F , Lucidi S . A nonmonotone line search technique for Newton's method. SIAM Journal on Numerical Analysis, 1986, 23 (4): 707- 716
doi: 10.1137/0723046 |
20 |
Grippo L , Lampariello F , Lucidi S . A truncated Newton method with nonmonotone line search for unconstrained optimization. Journal of Optimization Theory and Applications, 1989, 60 (3): 401- 419
doi: 10.1007/BF00940345 |
21 |
Toint P L . An assessment of nonmonotone linesearch techniques for unconstrained optimization. SIAM Journal on Scientific Computing, 1996, 17 (3): 725- 739
doi: 10.1137/S106482759427021X |
22 | Yahaya M M , Kumam P , Awwal A M , et al. A structured quasi-Newton algorithm with nonmonotone search strategy for structured NLS problems and its application in robotic motion control. Journal of Computational and Applied Mathematics, 2021, 395 (5): 113582 |
23 |
Zhang H , Hager W W . A nonmonotone line search technique and its application to unconstrained optimization. SIAM Journal on Optimization, 2004, 14 (4): 1043- 1056
doi: 10.1137/S1052623403428208 |
24 | Zhong W , Dong D F . Investigation on a class of nonmonotone cautious BFGS algorithms. Mathematica Numerica Sinica, 2011, 33 (4): 387- 396 |
25 |
Dai Y H . On the nonmonotone line search. Journal of Optimization Theory and Applications, 2002, 112 (2): 315- 330
doi: 10.1023/A:1013653923062 |
26 |
Amini K , Ahookhosh M , Nosratipour H . An inexact line search approach using modified nonmonotone strategy for unconstrained optimization. Numerical Algorithms, 2014, 66 (1): 49- 78
doi: 10.1007/s11075-013-9723-x |
27 |
Zhang L , Zhou W , Li D . Global convergence of the DY conjugate gradient method with Armijo line search for unconstrained optimization problems. Optimisation Methods and Software, 2007, 22 (3): 511- 517
doi: 10.1080/10556780600795748 |
28 |
Huang S , Wan Z , Chen X . A new nonmonotone line search technique for unconstrained optimization. Numerical Algorithms, 2015, 68 (4): 671- 689
doi: 10.1007/s11075-014-9866-4 |
29 | Hestenes M , Stiefel E . Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 1952, 49 (1): 409- 436 |
30 |
Fletcher R , Reeves C M . Function minimization by conjugate gradients. The Computer Journal, 1964, 7 (2): 149- 154
doi: 10.1093/comjnl/7.2.149 |
31 | Polak E , Ribiere G . Note sur la convergence de méthodes de directions conjuguées. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 1969, 3 (R1): 35- 43 |
32 |
Polyak B T . The conjugate gradient method in extremal problems. USSR Computational Mathematics and Mathematical Physics, 1969, 9 (4): 94- 112
doi: 10.1016/0041-5553(69)90035-4 |
33 |
Liu Y , Storey C . Efficient generalized conjugate gradient algorithms, part 1: theory. Journal of Optimization Theory and Applications, 1991, 69 (1): 129- 137
doi: 10.1007/BF00940464 |
34 | Fletcher R . Practical Method of Optimization Vol I: Unconstrained Optimization. New York: John Wiley and Sons, 1987 |
35 |
Dai Y H , Yuan Y . A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization, 1999, 10 (1): 177- 182
doi: 10.1137/S1052623497318992 |
36 | Zoutendijk G. Nonlinear Programming, Computational Methods//Abadie J. Integer and Nonlinear Programming. Amersterdam: North-Hollend, 1970: 37-86 |
37 |
Powell M J D . Convergence properties of algorithms for nonlinear optimization. Siam Review, 1986, 28 (4): 487- 500
doi: 10.1137/1028154 |
38 |
Hager W W , Zhang H . A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM Journal on Optimization, 2005, 16 (1): 170- 192
doi: 10.1137/030601880 |
39 | Dai Y , Yuan Y . An efficient hybrid conjugate gradient method for unconstrained optimization. Annals of Operations Research, 2001, 103 (1): 33- 47 |
40 |
Liu J , Feng Y . A derivative-free iterative method for nonlinear monotone equations with convex constraints. Numerical Algorithms, 2019, 82 (1): 245- 262
doi: 10.1007/s11075-018-0603-2 |
41 |
Zhang L , Zhou W , Li D H . A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence. IMA Journal of Numerical Analysis, 2006, 26 (4): 629- 640
doi: 10.1093/imanum/drl016 |
42 |
Abubakar A B , Kumam P , Ibrahim A H , et al. Derivative-free HS-DY-type method for solving nonlinear equations and image restoration. Heliyon, 2020, 6 (11): e05400
doi: 10.1016/j.heliyon.2020.e05400 |
43 |
Yuan G L , Wei Z X . Convergence analysis of a modified BFGS method on convex minimizations. Computational optimization and applications, 2010, 47 (2): 237- 255
doi: 10.1007/s10589-008-9219-0 |
44 | Yuan Y , Sun W . Theory and Methods of Optimization. Beijing: Science Press, 1999 |
45 |
Dolan E D , Moré J J . Benchmarking optimization software with performance profiles. Mathematical Programming, 2002, 91 (2): 201- 213
doi: 10.1007/s101070100263 |
[1] | 江羡珍,廖伟,简金宝,毋晓迪. 一个带重启步的改进PRP型谱共轭梯度法[J]. 数学物理学报, 2022, 42(1): 216-227. |
[2] | 朱志斌,耿远航. 一个改进的WYL型三项共轭梯度法[J]. 数学物理学报, 2021, 41(6): 1871-1879. |
[3] | 马国栋. 强Wolfe线搜索下的修正PRP和HS共轭梯度法[J]. 数学物理学报, 2021, 41(3): 837-847. |
[4] | 刘月园,王凯,秦树娟,李姣芬. 列正交约束下广义Sylvester方程极小化问题的有效算法[J]. 数学物理学报, 2021, 41(2): 479-495. |
[5] | 杨柳,邓醉茶. 退化抛物型方程的一个初值反演问题[J]. 数学物理学报, 2020, 40(4): 891-903. |
[6] | 马国栋. 一般约束极大极小优化问题一个强收敛的广义梯度投影算法[J]. 数学物理学报, 2020, 40(3): 641-649. |
[7] | 李向利,师娟娟,董晓亮. 一类修正的非单调谱共轭梯度法及其在非负矩阵分解中的应用[J]. 数学物理学报, 2018, 38(5): 954-962. |
[8] | 宋卫红, 张凯院, 聂玉峰. 离散对偶代数Riccati方程异类约束解的双迭代算法[J]. 数学物理学报, 2014, 34(6): 1440-1449. |
[9] | 胡朝明, 万中, 王旭. 一种新的非单调谱共轭梯度算法[J]. 数学物理学报, 2013, 33(1): 78-88. |
[10] | 邢丽丽, 李维国. 图像恢复问题中减少梯子现象的一种新模型[J]. 数学物理学报, 2009, 29(4): 882-890. |
[11] | 周长银; 贺国平; 王永丽. 基于有效约束识别技术的一个SSLE算法及其收敛性分析[J]. 数学物理学报, 2007, 27(3): 535-540. |
[12] | 王长钰;宇振盛. 求解非线性系统的有效集信赖域方法[J]. 数学物理学报, 2006, 26(2): 223-232. |
[13] | 时贞军. 精确搜索下的非线性共轭梯度法[J]. 数学物理学报, 2004, 4(6): 675-682. |
[14] | 高自友, 任华玲, 贺国平. 无严格互补松驰条件的序列线性方程组新算法[J]. 数学物理学报, 2004, 24(3): 275-284. |
[15] | 施保昌, 陈珽, 祝世京. 多目标决策的中心方法之统一探讨[J]. 数学物理学报, 1997, 17(S1): 15-22. |
|