数学物理学报 ›› 2022, Vol. 42 ›› Issue (1): 86-102.
收稿日期:
2020-07-27
出版日期:
2022-02-26
发布日期:
2022-02-23
通讯作者:
朱凯旋
E-mail:zhukx12@163.com;xieyq@csust.edu.cn;meixy@szu.edu.cn;xijundeng@126.com
作者简介:
谢永钦, E-mail: 基金资助:
Kaixuan Zhu1,*(),Yongqin Xie2(),Xinyu Mei3(),Xijun Deng1()
Received:
2020-07-27
Online:
2022-02-26
Published:
2022-02-23
Contact:
Kaixuan Zhu
E-mail:zhukx12@163.com;xieyq@csust.edu.cn;meixy@szu.edu.cn;xijundeng@126.com
Supported by:
摘要:
该文考虑带有时滞项的弱阻尼波方程一致吸引子的存在性,其中非线性项的增长次数大于3而小于5.通过构造能量泛函并结合收缩函数方法得到过程
中图分类号:
朱凯旋,谢永钦,梅鑫钰,邓习军. 带有时滞项的超三次弱阻尼波方程一致吸引子的存在性[J]. 数学物理学报, 2022, 42(1): 86-102.
Kaixuan Zhu,Yongqin Xie,Xinyu Mei,Xijun Deng. Uniform Attractors for the Sup-Cubic Weakly Damped Wave Equations with Delays[J]. Acta mathematica scientia,Series A, 2022, 42(1): 86-102.
1 | Hale J K , Lunel S M . Introduction to Functional Differential Equations. New York: Springer-Verlag, 1993 |
2 | Hale J K. Asymptotic Behavior of Dissipative Systems. Providence: American Mathematical Society, 1988 |
3 |
Caraballo T , Kloeden P E , Real J . Pullback and forward attractors for a damped wave equation with delays. Stoch Dyn, 2004, 4: 405- 423
doi: 10.1142/S0219493704001139 |
4 |
Caraballo T , Real J . Attractors for 2D-Navier-Stokes models with delays. J Differential Equations, 2004, 205: 271- 297
doi: 10.1016/j.jde.2004.04.012 |
5 |
Caraballo T , Marín-Rubio P , Valero J . Autonomous and non-autonomous attractors for differential equations with delays. J Differential Equations, 2005, 208: 9- 41
doi: 10.1016/j.jde.2003.09.008 |
6 |
Caraballo T , Marín-Rubio P , Valero J . Attractors for differential equations with unbounded delays. J Differential Equations, 2007, 239: 311- 342
doi: 10.1016/j.jde.2007.05.015 |
7 |
Caraballo T , Real J , Márquez A M . Three-dimensional system of globally modified Navier-Stokes equations with delay. Internat J Bifur Chaos Appl Sci Engrg, 2010, 20: 2869- 2883
doi: 10.1142/S0218127410027428 |
8 |
Caraballo T , Kloeden P E , Marín-Rubio P . Numerical and finite delay approximations of attractors for logistic differential-integral equations with infinite delay. Discrete Contin Dyn Syst, 2007, 19: 177- 196
doi: 10.3934/dcds.2007.19.177 |
9 |
García-Luengo J , Marín-Rubio P . Reaction-diffusion equations with non-autonomous force in H-1 and delays under measurability conditions on the driving delay term. J Math Anal Appl, 2014, 417: 80- 95
doi: 10.1016/j.jmaa.2014.03.026 |
10 |
García-Luengo J , Marín-Rubio P , Real J . Pullback attractors for 2D Navier-Stokes equations with delays and their regularity. Adv Nonlinear Stud, 2013, 13: 331- 357
doi: 10.1515/ans-2013-0205 |
11 |
García-Luengo J , Marín-Rubio P , Real J . Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Commun Pure Appl Anal, 2015, 14: 1603- 1621
doi: 10.3934/cpaa.2015.14.1603 |
12 |
García-Luengo J , Marín-Rubio P , Planas G . Attractors for a double time-delayed 2D-Navier-Stokes model. Discrete Contin Dyn Syst, 2014, 34: 4085- 4105
doi: 10.3934/dcds.2014.34.4085 |
13 |
García-Luengo J , Marín-Rubio P , Real J . Regularity of pullback attractors and attraction in H1 in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete Contin Dyn Syst, 2014, 34: 181- 201
doi: 10.3934/dcds.2014.34.181 |
14 |
Kloeden P E , Marín-Rubio P . Equi-attraction and the continuous dependence of attractors on time delays. Discrete Contin Dyn Syst Ser B, 2008, 9: 581- 593
doi: 10.3934/dcdsb.2008.9.581 |
15 |
Marín-Rubio P , Márquez-Durán A M , Real J . Pullback attractors for globally modified Navier-Stokes equations with infinite delays. Discrete Contin Dyn Syst, 2011, 31: 779- 796
doi: 10.3934/dcds.2011.31.779 |
16 | Wu F , Kloeden P E . Mean-square random attractors of stochastic delay differential equations with random delay. Discrete Contin Dyn Syst Ser B, 2013, 18: 1715- 1734 |
17 |
Wang Y J , Kloeden P E . The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete Contin Dyn Syst, 2014, 34: 4343- 4370
doi: 10.3934/dcds.2014.34.4343 |
18 |
Wang Y J . Pullback attractors for a damped wave equation with delays. Stoch Dyn, 2015, 15: 1550003
doi: 10.1142/S0219493715500033 |
19 |
Wang J T , Zhao C D , Caraballo T . Invariant measures for the 3D globally modified Navier-Stokes equations with unbounded variable delays. Commun Nonlinear Sci Numer Simul, 2020, 91: 105459
doi: 10.1016/j.cnsns.2020.105459 |
20 |
Zhao C D , Liu G W , An R . Global well-posedness and pullback attractors for an incompressible non-Newtonian fluid with infinite delays. Differ Equ Dyn Syst, 2017, 25: 39- 64
doi: 10.1007/s12591-014-0231-9 |
21 |
Zhu K X , Xie Y Q , Zhou F . Pullback attractors for a damped semilinear wave equation with delays. Acta Math Sin, 2018, 34: 1131- 1150
doi: 10.1007/s10114-018-7420-3 |
22 |
Kloeden P E . Upper semi continuity of attractors of delay differential equations in the delay. Bull Austral Math Soc, 2006, 73: 299- 306
doi: 10.1017/S0004972700038880 |
23 | Lions J L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Paris: Dunod, 1969 |
24 | Wang C Z , Zhang M S , Zhao C D . Existence of the uniform trajectory attractor for a 3D incompressible non-Newtonian fluid flow. Acta Math Sci, 2018, 38B: 187- 202 |
25 |
Zhao C D , Zhou S F , Liao X Y . Uniform attractors for nonautonomous incompressible non-Newtonian fluid with locally uniform integrable external forces. J Math Phys, 2006, 47: 052701
doi: 10.1063/1.2200145 |
26 | Zhao C D , Jia X L , Yang X B . Uniform attractor for nonautonomous incompressible non-Newtonian fluid with a new class of external forces. Acta Math Sci, 2011, 31B: 1803- 1812 |
27 | Temam R . Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer-Verlag, 1997 |
28 |
Thanh D T P . Asymptotic behavior of solutions to semilinear parabolic equations with infinite delay. Acta Math Vietnam, 2019, 44: 875- 892
doi: 10.1007/s40306-018-0289-5 |
29 |
Arrieta J , Carvalho A N , Hale J K . A damped hyperbolic equation with critical exponent. Comm Partial Differential Equations, 1992, 17: 841- 866
doi: 10.1080/03605309208820866 |
30 | Babin A V, Vishik M I. Attractors of Evolution Equations. Amsterdam: North-Holland, 1992 |
31 | Ball J M . Global attractors for damped semilinear wave equations. Discrete Contin Dyn Syst, 2004, 10: 31- 52 |
32 |
Kalantarov V , Savostianov A , Zelik S . Attractors for damped quintic wave equations in bounded domains. Ann Henri Poincaré, 2016, 17: 2555- 2584
doi: 10.1007/s00023-016-0480-y |
33 |
Burq N , Lebeau G , Planchon F . Global existence for energy critical waves in 3-D domains. J Amer Math Soc, 2008, 21: 831- 845
doi: 10.1090/S0894-0347-08-00596-1 |
34 |
Blair M D , Smith H F , Sogge C D . Strichartz estimates for the wave equation on manifolds with boundary. Ann Inst H Poincaré Anal Non Linéaire, 2009, 26: 1817- 1829
doi: 10.1016/j.anihpc.2008.12.004 |
35 |
Burq N , Planchon F . Global existence for energy critical waves in 3-D domains: Neumann boundary conditions. Amer J Math, 2009, 131: 1715- 1742
doi: 10.1353/ajm.0.0084 |
36 | Zhu K X , Xie Y Q , Mei X Y . Pullback attractors for a sup-cubic weakly damped wave equation with delays. Discrete Contin Dyn Syst Ser B, 2021, 26: 4433- 4458 |
37 |
Chueshov I , Lasiecka I . Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping. J Differential Equations, 2007, 233: 42- 86
doi: 10.1016/j.jde.2006.09.019 |
38 |
Khanmamedov A K . Global attractors for von Karman equations with nonlinear interior dissipation. J Math Anal Appl, 2006, 318: 92- 101
doi: 10.1016/j.jmaa.2005.05.031 |
39 | Kloeden P E , Lorenz T . Pullback incremental attraction. Nonauton Dyn Syst, 2014, (1): 53- 60 |
40 | Sun C Y , Cao D M , Duan J Q . Uniform attractors for nonautonomous wave equations with nonlinear damping. SIAM J Appl Dyn Syst, 2006, 6: 293- 318 |
41 |
Xie Y Q , Li Q S , Zhu K X . Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity. Nonlinear Anal Real World Appl, 2016, 31: 23- 37
doi: 10.1016/j.nonrwa.2016.01.004 |
42 | Zhou F , Sun C Y , Li X . Dynamics for the damped wave equations on time-dependent domains. Discrete Contin Dyn Syst Ser B, 2018, 23: 1645- 1674 |
43 | Chepyzhov V V, Vishik M I. Attractors for Equations of Mathematical Physis. Providence: American Mathematical Society, 2002 |
44 | Zelik S . Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces. Discrete Contin Dyn Syst B, 2015, 20: 781- 810 |
45 | Mei X Y , Sun C Y . Attractors for a sup-cubic weakly damped wave equation in $\mathbb{R} ^{3}$. Discrete Contin Dyn Syst Ser B, 2019, 24: 4117- 4143 |
46 |
Mei X Y , Sun C Y . Uniform attractors for a weakly damped wave equation with sup-cubic nonlinearity. Appl Math Lett, 2019, 95: 179- 185
doi: 10.1016/j.aml.2019.04.003 |
[1] | 王长有,李楠,蒋涛,杨强. 一类具有时滞及反馈控制的非自治非线性比率依赖食物链模型[J]. 数学物理学报, 2022, 42(1): 245-268. |
[2] | 孙悦,张道祥,周文. 恐惧效应对带时滞的反应扩散捕食系统的稳定区间的影响[J]. 数学物理学报, 2021, 41(6): 1980-1992. |
[3] | 张再云,刘振海,邓又军. 具有时变时滞和速度相关材料密度的非线性粘弹性方程的整体存在性和一般衰减性[J]. 数学物理学报, 2021, 41(6): 1684-1704. |
[4] | 仉志余,赵成,李宇宇. 时间尺度上带超线性中立项的二阶时滞动力方程的振动性[J]. 数学物理学报, 2021, 41(6): 1838-1852. |
[5] | 覃桂茳,杨甲山. 具拟线性中立项的二阶变时滞动力方程的振动定理[J]. 数学物理学报, 2021, 41(5): 1492-1503. |
[6] | 王晶囡,杨德中. 具时滞扩散效应的病原体-免疫模型的稳定性及分支[J]. 数学物理学报, 2021, 41(4): 1204-1217. |
[7] | 仉志余. 具次线性中立项的二阶广义Emden-Fowler时滞微分方程的振动准则[J]. 数学物理学报, 2021, 41(3): 811-826. |
[8] | 李喜玲,高飞,李文琴. 具有免疫时滞的分数阶HBV感染模型稳定性分析[J]. 数学物理学报, 2021, 41(2): 562-576. |
[9] | 朱凯旋,谢永钦,周峰,邓习军. 带有时滞项的复Ginzburg-Landau方程的拉回吸引子[J]. 数学物理学报, 2020, 40(5): 1341-1353. |
[10] | 刘健,张志信,蒋威. 分数阶非线性时滞脉冲微分系统的全局Mittag-Leffler稳定性[J]. 数学物理学报, 2020, 40(4): 1053-1060. |
[11] | 黄星寿,罗日才,王五生. 基于Gronwall积分不等式的比例时滞神经网络稳定性分析[J]. 数学物理学报, 2020, 40(3): 824-832. |
[12] | 阳超,李润洁. 一类具有不连续捕获的Lasota-Wazewska模型周期解存在性及稳定性分析[J]. 数学物理学报, 2019, 39(4): 785-796. |
[13] | 周庆华,万立,刘杰. 具有变时滞的神经型Hopfield神经网络的全局吸引子研究[J]. 数学物理学报, 2019, 39(4): 823-831. |
[14] | 李文娟,李书海,俞元洪. 非线性二阶中立型分布时滞微分方程的振动性[J]. 数学物理学报, 2019, 39(4): 812-822. |
[15] | 王琼,龙芳,王珺. 关于差分Riccati方程及时滞微分方程的相关结果[J]. 数学物理学报, 2019, 39(4): 832-838. |
|