Youyan Wan,Jun Xie. The Existence of Two Positive Solutions to an Elliptic System with Critical Sobolev Exponents[J]. Acta mathematica scientia,Series A, 2022, 42(1): 103-130.
Alves C O , Morais Filho D C de , Souto M A S . On systems of elliptic equations involving subcritical or critical Sobolev exponents. Nonlinear Analysis, 2000, 42 (5): 771- 787
doi: 10.1016/S0362-546X(99)00121-2
2
Han P . High-energy positive solutions for a critical growth Dirichlet problem in noncontractible domains. Nonlinear Analysis, 2005, 60 (2): 369- 387
doi: 10.1016/j.na.2004.08.034
3
Wan Y , Yang J . Multiple solutions for inhomogeneous critical semilinear elliptic problems. Nonlinear Analysis, 2008, 68 (9): 2569- 2593
doi: 10.1016/j.na.2007.02.005
Wan Y Y . Discussion on positive solutions of an elliptic system with variable potentials involving critical Sobolev exponents. J Nantong University(Natrual Science Edition), 2013, 12 (3): 82- 85
5
Ambrosetti A . Critical Points and Nonlinear Variational Problems. Memoire de la Societe Mathematique de France, 1992,
doi: 10.24033/msmf.362
6
Schwartz J T . Nonlinear Functional Analysis. New York: Gordon & Breach, 1969
7
Adachi S , Tanaka K . Four positive solutions for a semilinear elliptic equation: $-\nabla u+u=a(x)u^p+f(x)$ in $\mathbb{R} ^N$. Calc Var, 2000, 11: 63- 95
doi: 10.1007/s005260050003
8
Willem M . Minimax Theorem. Berlin: Birkhäuser, 1996
9
Struwe M . Variational Methods. Berlin: Springer-Verlag, 1996