1 |
郭鹏娟, 郭钜旋, 王国玲. 不同血清型登革病毒复合感染现状及防控挑战. 中国热带医学, 2018, 18: 99- 102
|
|
Guo P J , Guo J X , Wang G L . The status of co-infection with multiple Dengue virus serotypes and the challenge to disease control. China Tropical Medicine, 2018, 18: 99- 102
|
2 |
Alto B W , Juliano S A . Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. J Med Entomol, 2001, 38: 548- 556
doi: 10.1603/0022-2585-38.4.548
|
3 |
孟凤霞, 王义冠, 冯磊, 刘起勇. 我国登革热疫情防控与媒介伊蚊的综合治理. 中国媒介生物学及控制杂志, 2015, 26: 4- 10
doi: 10.11853/j.issn.1003.4692.2015.01.002
|
|
Meng F X , Wang Y G , Feng L , Liu Q Y . Review on dengue prevention and control and integrated mosquito management in China. Chinese Journal of Vector Biology and Control, 2015, 26: 4- 10
doi: 10.11853/j.issn.1003.4692.2015.01.002
|
4 |
Keeling M J , Rohani P . Modeling Infectious Diseases in Humans and Animals. Princeton, NJ: Princeton University Press, 2008
|
5 |
王双明, 樊馨蔓, 张明军, 梁俊荣. 具周期性潜伏期的SEIR传染病模型的动力学. 数学物理学报, 2020, 40A (2): 527- 539
doi: 10.3969/j.issn.1003-3998.2020.02.023
|
|
Wang S M , Fan X M , Zhang M J , Liang J R . The dynamics of an SEIR epidemic model with time-periodic latent period. Acta Math Sci, 2020, 40A (2): 527- 539
doi: 10.3969/j.issn.1003-3998.2020.02.023
|
6 |
韩祥临, 汪维刚, 莫嘉琪. 流行性病毒传播生态动力学系统. 数学物理学报, 2019, 39A (1): 200- 208
doi: 10.3969/j.issn.1003-3998.2019.01.019
|
|
Han X L , Wang W G , Mo J Q . Bionomics dynamic system for epidemic virus transmission. Acta Math Sci, 2019, 39A (1): 200- 208
doi: 10.3969/j.issn.1003-3998.2019.01.019
|
7 |
Esteva L , Vargas C . Analysis of a dengue disease transmission model. Math Biosci, 1998, 150: 131- 151
doi: 10.1016/S0025-5564(98)10003-2
|
8 |
Feng Z L , Velasco-Hernández J X . Competitive exclusion in a vector-host model for the dengue fever. J Math Biol, 1997, 35: 523- 544
doi: 10.1007/s002850050064
|
9 |
Zhang X H , Tang S Y , Cheke R A , et al. Models to assess the effects of non-identical sex ratio augmentations of Wolbachia-carrying mosquitoes on the control of dengue disease. Math Biosci, 2018, 299: 58- 72
doi: 10.1016/j.mbs.2018.03.003
|
10 |
Champagne C , Cazelles B . Comparison of stochastic and deterministic frameworks in dengue modelling. Math Biosci, 2019, 310: 1- 12
doi: 10.1016/j.mbs.2019.01.010
|
11 |
Wang W D , Zhao X Q . A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J Appl Math, 2011, 71: 147- 168
doi: 10.1137/090775890
|
12 |
Zhang L , Wang S M . A time-periodic and reaction-diffusion Dengue fever model with extrinsic incubation period and crowding effects. Nonlinear Anal: Real World Appl, 2020, 51: 102988
doi: 10.1016/j.nonrwa.2019.102988
|
13 |
Vaidya N K , Li X P , Wang F B . Impact of spatially heterogeneous temperature on the dynamics of dengue epidemics. Discrete Contin Dyn Syst (Ser B), 2019, 24: 321- 349
|
14 |
Zhu M , Lin Z G . The impact of human activity on the risk index and spatial spreading of dengue fever. Nonlinear Anal: Real World Appl, 2018, 39: 424- 450
doi: 10.1016/j.nonrwa.2017.07.007
|
15 |
Shigesada N , Kawasaki K , Teramoto E . Spatial segregation of interacting species. J Theor Biol, 1979, 79: 83- 99
doi: 10.1016/0022-5193(79)90258-3
|
16 |
Lou Y , Tao Y S , Winkler M . Nonexistence of nonconstant steady-state solutions inatriangular cross-diffusion model. J Differential Equations, 2017, 262: 5160- 5178
doi: 10.1016/j.jde.2017.01.017
|
17 |
Jia Y F , Wu J H , Xu H K . Positive solutions of a Lotka-Volterra competition model with cross-diffusion. Comput Math Appl, 2014, 68: 1220- 1228
doi: 10.1016/j.camwa.2014.08.016
|
18 |
Zhao H Y , Zhang Q J , Zhu L H . The spaial dynamics of a zebrafish model with cross-diffusions. Math Biosci Eng, 2017, 14: 1035- 1054
doi: 10.3934/mbe.2017054
|
19 |
Cai Y L , Wang W M . Stability and Hopf bifurcation of the stationary solutions to an epidemic model with cross-diffusion. Comput Math Appl, 2015, 70: 1906- 1920
doi: 10.1016/j.camwa.2015.08.003
|
20 |
Zhu M , Lin Z G , Zhang Q Y . Coexistence of a cross-diffusion dengue fever model in a heterogeneous environment. Comput Math Appl, 2018, 75: 1004- 1015
doi: 10.1016/j.camwa.2017.10.033
|
21 |
Gubler D J . Cities spawn epidemic dengue virues. Nat Med, 2004, 10: 129- 130
doi: 10.1038/nm0204-129
|
22 |
van den Driessche P , Watmough J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 2002, 180: 29- 48
doi: 10.1016/S0025-5564(02)00108-6
|
23 |
Bendahmane M , Langlais M . A reaction-diffusion system with cross-diffusion modeling the spread of an epidemic disease. J Evol Equ, 2010, 10: 883- 904
doi: 10.1007/s00028-010-0074-y
|
24 |
Allen L J S , Bolker B M , Lou Y , et al. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin Dyn Syst Ser A, 2008, 21: 1- 20
doi: 10.3934/dcds.2008.21.1
|
25 |
Zhao X Q . Dynamical Systems in Population Biology. New York: Springer, 2017,
|
26 |
Álvarez-Caudevilla P , Du Y H , Peng R . Qualitative analysis of a cooperative reaction-diffusion system in a spatiotemporally degenerate environment. SIAM J Math Anal, 2014, 46: 499- 531
doi: 10.1137/13091628X
|
27 |
Pao C V . Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion. Nonlinear Anal, 2005, 60: 1197- 1217
doi: 10.1016/j.na.2004.10.008
|
28 |
Neuhauser C . Mathematical challenges in spatial ecology. Notices Amer Math Soc, 2001, 48: 1304- 1314
|
29 |
Ni W J , Shi J P , Wang M X . Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model. J Differential Equations, 2018, 264: 6891- 6932
doi: 10.1016/j.jde.2018.02.002
|
30 |
Ding W W , Peng R , Wei L . The diffusive logistic model with a free boundary in a heterogeneous time-periodic environment. J Differential Equations, 2017, 263: 2736- 2779
doi: 10.1016/j.jde.2017.04.013
|
31 |
Ge J , Kim K I , Lin Z G , et al. A SIS reaction-diffusion-advection model in a low-risk and high-risk domain. J Differential Equations, 2015, 259: 5486- 5509
doi: 10.1016/j.jde.2015.06.035
|
32 |
Zhu M , Lin Z G . Modeling the transmission of dengue fever with limited medical resources and self-protection. Discrete Contin Dyn Syst (Ser B), 2018, 23: 957- 974
|