1 |
Gao J G , Zhang C , Wang J L . Analysis of a reaction-diffusion SVIR model with a fixed latent period and non-local infections. Appl Anal, 2020,
doi: 10.1080/00036811.2020.1750601
|
2 |
Thieme H R , Zhao X Q . A non-local delayed and diffusive predator-prey model. Nonlinear Anal RWA, 2001, 2, 145- 160
doi: 10.1016/S0362-546X(00)00112-7
|
3 |
Lou Y J , Zhao X Q . A reaction-diffusion malaria model with incubation period in the vector population. J Math Biol, 2011, 62, 543- 568
doi: 10.1007/s00285-010-0346-8
|
4 |
Xu Z T , Zhao X Q . A vector-bias malaria model with incubation period and diffusion. Discrete Contin Dyn Syst Ser B, 2012, 17 (7): 2615- 2634
|
5 |
Xu Z T , Zhao Y Y . A diffusive dengue disease model with nonlocal delayed transmission. Appl Math Comput, 2015, 270, 808- 829
|
6 |
Zhang L , Wang S M . A time-periodic and reaction-diffusion Dengue fever model with extrinsic incubation period and crowding effects. Nonlinear Anal RWA, 2020, 51, 102988
doi: 10.1016/j.nonrwa.2019.102988
|
7 |
Li F X , Zhao X Q . Global dynamics of a nonlocal periodic reaction-diffusion model of bluetongue disease. J Differ Equa, 2021, 272, 127- 163
doi: 10.1016/j.jde.2020.09.019
|
8 |
McCluskey C C , Yang Y . Global stability of a diffusive virus dynamics model with general incidence function and time delay. Nonlinear Anal RWA, 2015, 25, 64- 78
doi: 10.1016/j.nonrwa.2015.03.002
|
9 |
Shu H Y , Chen Y M , Wang L . Impacts of the cell-free and cell-to-cell infection modes on viral dynamics. J Dyn Differ Equa, 2018, 30, 1817- 1836
doi: 10.1007/s10884-017-9622-2
|
10 |
Yang Y , Zou L , Ruan S G . Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions. Math Biosci, 2015, 270, 183- 191
doi: 10.1016/j.mbs.2015.05.001
|
11 |
He G F , Wang J B , Huang G . Wave propagation of a diffusive epidemic model with latency and vaccination. Appl Anal, 2021, 100, 1972- 1995
doi: 10.1080/00036811.2019.1672868
|
12 |
Wang L W , Liu Z J , Zhang X A . Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence. Appl Math Comput, 2016, 284, 47- 65
|
13 |
Xu R . Global stability of a delayed epidemic model with latent period and vaccination strategy. Appl Math Model, 2012, 36 (11): 5293- 5300
doi: 10.1016/j.apm.2011.12.037
|
14 |
张鑫喆, 贺国峰, 黄刚. 一类具有接种和潜伏期的传染病模型及动力学分析. 数学物理学报, 2019, 39A (5): 1247- 1259
doi: 10.3969/j.issn.1003-3998.2019.05.025
|
|
Zhang X Z , He G F , Huang G . Dynamical properties of a delayed epidemic model with vaccination and saturation incidence. Acta Math Sci, 2019, 39A (5): 1247- 1259
doi: 10.3969/j.issn.1003-3998.2019.05.025
|
15 |
Liu X N , Takeuchi Y , Iwami S . SVIR epidemic models with vaccination strategies. J Theor Biol, 2008, 253 (1): 1- 11
doi: 10.1016/j.jtbi.2007.10.014
|
16 |
Xu Z T , Xu Y Q , Huang Y H . Stability and traveling waves of a vaccination model with nonlinear incidence. Comput Math Appl, 2018, 75 (2): 561- 581
doi: 10.1016/j.camwa.2017.09.042
|
17 |
Guo Z M , Wang F B , Zou X F . Threshold dynamics of an infective disease model with a fixed latent period and non-local infections. J Math Biol, 2012, 65, 1387- 1410
doi: 10.1007/s00285-011-0500-y
|
18 |
Zhang L , Wang Z C , Zhao X Q . Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period. J Differ Equa, 2015, 258, 3011- 3036
doi: 10.1016/j.jde.2014.12.032
|