1 |
Bisi M , Cañizo J A , Lods B . Entropy dissipation estimates for the linear Boltzmann operator. J Funct Anal, 2015, 269 (4): 1028- 1069
doi: 10.1016/j.jfa.2015.05.002
|
2 |
Cañizo J A , Einav A , Lods B . On the rate of convergence to equilibrium for the linear Boltzmann equation with soft potentials. J Math Anal Appl, 2018, 462 (1): 801- 839
doi: 10.1016/j.jmaa.2017.12.052
|
3 |
Lods B , Mokhtar-Kharroubi M . Convergence to equilibrium for linear spatially homogeneous Boltzmann equation with hard and soft potentials: a semigroup approach in $L^{1}$-spaces. Math Meth Appl Sci, 2017, 40 (18): 6527- 6555
doi: 10.1002/mma.4473
|
4 |
Lods B , Mouhot C , Toscani G . Relaxation rate, diffusion approximation and Fick's law for inelastic scattering Boltzmann models. Kinet Relat Models, 2008, 1 (2): 223- 248
doi: 10.3934/krm.2008.1.223
|
5 |
Bisi M , Cañizo J A , Lods B . Uniqueness in the weakly inelastic regime of the equilibrium state to the Boltzmann equation driven by a particle bath. SIAM J Math Anal, 2011, 43 (6): 2640- 2674
doi: 10.1137/110837437
|
6 |
Cañizo J A , Lods B . Exponential trend to equilibrium for the inelastic Boltzmann equation driven by a particle bath. Nonlinearity, 2016, 29 (5): 1687- 1715
doi: 10.1088/0951-7715/29/5/1687
|
7 |
Mouhot C , Neumann L . Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity, 2006, 19 (4): 969- 998
doi: 10.1088/0951-7715/19/4/011
|
8 |
Gualdani M P, Mischler S, Mouhot C. Factorization of non-symmetric operators and exponential H-theorem. 2010, arXiv: 1006.5523
|
9 |
Mischler S , Mouhot C . Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation. Arch Ration Mech Anal, 2016, 221 (2): 677- 723
doi: 10.1007/s00205-016-0972-4
|
10 |
Tristani I . Exponential convergence to equilibrium for the homogeneous Boltzmann equation for hard potentials without cut-off. J Stat Phys, 2014, 157 (3): 474- 496
doi: 10.1007/s10955-014-1066-z
|
11 |
Hérau F , Tonon D , Tristani I . Regularization estimates and Cauchy theory for inhomogeneous Boltzmann equation for hard potentials without cut-off. Commun Math Phys, 2020, 377 (1): 697- 771
doi: 10.1007/s00220-020-03682-8
|
12 |
Carrapatoso K . Exponential convergence to equilibrium for the homogenenous Landau equation with hard potentials. Bull Sci Math, 2015, 139 (7): 777- 805
doi: 10.1016/j.bulsci.2014.12.002
|
13 |
Carrapatoso K , Tristani I , Wu K C . Cauchy problem and exponential stability for the inhomogeneous Landau equation. Arch Ration Mech Anal, 2016, 221 (1): 363- 418
doi: 10.1007/s00205-015-0963-x
|
14 |
Li F C , Sun B Y . Optimal exponential decay for the linearized ellipsoidal BGK model in weighted Sobolev spaces. J Stat Phys, 2020, 181 (2): 690- 714
doi: 10.1007/s10955-020-02595-z
|
15 |
Li F C , Wu K C . Semigroup decay of the linearized Boltzmann equation in a torus. J Differential Equations, 2016, 260 (3): 2729- 2749
doi: 10.1016/j.jde.2015.10.012
|
16 |
Wu K C . Pointwise behavior of the linearized Boltzmann equation on a torus. SIAM J Math Anal, 2014, 46 (1): 639- 656
doi: 10.1137/13090482X
|
17 |
Cañizo J A , Cao C Q , Evans J , Yoldaş H . Hypocoercivity of linear kinetic equations via Harris's theorem. Kinet Relat Models, 2020, 13 (1): 97- 128
doi: 10.3934/krm.2020004
|
18 |
Alonso A , Morimoto Y , Sun W R , Yang T . Non-cutoff Boltzmann equation with polynomial decay perturbations. Rev Mat Iberoam, 2021, 37 (1): 189- 292
|
19 |
Desvillettes L , Mouhot C . Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions. Arch Ration Mech Anal, 2009, 193 (2): 227- 253
doi: 10.1007/s00205-009-0233-x
|
20 |
Mouhot C , Strain R M . Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J Math Pures Appl, 2007, 87 (5): 515- 535
doi: 10.1016/j.matpur.2007.03.003
|
21 |
Mouhot C . Explicit coercivity estimates for the linearized Boltzmann and Landau operators. Commun Partial Differ Equ, 2006, 31 (9): 1321- 1348
doi: 10.1080/03605300600635004
|
22 |
Yang T , Yu H J . Spectrum analysis of some kinetic equations. Arch Ration Mech Anal, 2016, 222 (2): 731- 768
doi: 10.1007/s00205-016-1010-2
|
23 |
Sun B Y . Exponential convergence for the linear homogeneous Boltzmann equation for hard potentials. Appl Math Comput, 2018, 339, 727- 737
|