1 |
Li J , Ma Z . Qualitative analyses of SIS epidemic model with vaccination and varying total population size. Mathematical and Computer Modelling, 2002, 35 (11/12): 1235- 1243
|
2 |
Farnoosh R , Parsamanesh M . Disease extinction and persistence in a discrete-time SIS epidemic model with vaccination and varying population size. Filomat, 2017, 31 (15): 4735- 4747
doi: 10.2298/FIL1715735F
|
3 |
Li J , Ma Z . Global analysis of SIS epidemic models with variable total population size. Mathematical and Computer Modelling, 2004, 39 (11/12): 1231- 1242
|
4 |
Kribs-Zaleta C , Velasco-Hern 'andez J . A simple vaccination model with multiple endemic states. Mathematical Biosciences, 2000, 164 (2): 183- 201
doi: 10.1016/S0025-5564(00)00003-1
|
5 |
Gumel A , Moghadas S . A qualitative study of a vaccination model with nonlinear incidence. Applied Mathematics and Computation, 2015, 143 (2): 409- 419
|
6 |
Li X , Wang J , Ghosh M . Stability and bifurcation of an SIVS epidemic model with treatment and age of vaccination. Applied Mathematical Modelling, 2010, 34 (2): 437- 450
doi: 10.1016/j.apm.2009.06.002
|
7 |
Knipl D , Pilarczyk P , Rost G . Rich bifurcation structure in a two-patch vaccination model. Siam Journal on Applied Dynamical Systems, 2015, 14 (2): 980- 1017
doi: 10.1137/140993934
|
8 |
Nie L , Shen J , Yang C . Dynamic behavior analysis of SIVS epidemic models with state-dependent pulse vaccination. Nonlinear Analysis: Hybrid Systems, 2018, 27, 258- 270
doi: 10.1016/j.nahs.2017.08.004
|
9 |
Zhao Y , Jiang D , O'Regan D . The extinction and persistence of the stochastic SIS epidemic model with vaccination. Physical A: Statistical Mechanics and Its Applications, 2013, 392 (20): 4916- 4927
doi: 10.1016/j.physa.2013.06.009
|
10 |
Liu Q , Jiang D , Shi N , et al. The threshold of a stochastic SIS epidemic model with imperfect vaccination. Mathematics and Computers in Simulation, 2018, 144, 78- 90
doi: 10.1016/j.matcom.2017.06.004
|
11 |
Zhao Y , Jiang D . Dynamics of stochastically perturbed SIS epidemic model with vaccination. Abstract and Applied Analysis, 2013, (2013): 1401- 1429
|
12 |
Zhao Y , Jiang D . The threshold of a stochastic SIS epidemic model with vaccination. Applied Mathematics and Computation, 2014, 243, 718- 727
doi: 10.1016/j.amc.2014.05.124
|
13 |
Zhang W , Meng X , Dong Y . Periodic solution and ergodic stationary distribution of stochastic SIRI epidemic systems with nonlinear perturbations. Journal of Systems Science and Complexity, 2019, 32 (4): 1104- 1124
doi: 10.1007/s11424-018-7348-9
|
14 |
林青腾. 随机干扰下若干传染病模型的动力学行为[D]. 福州: 福州大学, 2018
|
|
Lin Q T. Dynamics Behavior of a Number of Infectious Disease Model Under Random Disturbance[D]. Fuzhou: Fuzhou University, 2018
|
15 |
Takeuchi Y , Du N H , Hieu N T , Sato K . Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment. Journal of Mathematical Analysis and Applications, 2017, 323 (2): 938- 957
|
16 |
Zu L , Jiang D , O'Regan D . Conditions for persistence and ergodicity of a stochastic Lotka-Volterra predator-prey model with regime switching. Communications in Nonlinear Science and Numerical Simulation, 2015, 29 (1-3): 1- 11
|
17 |
Zhang X , Wang K . Stochastic SIR model with jumps. Applied Mathematics Letters, 2013, 26 (8): 867- 874
doi: 10.1016/j.aml.2013.03.013
|
18 |
胡俊娜. 转换机制下的具有非线性发生率的随机传染病模型的动力学性质[D]. 乌鲁木齐: 新疆大学, 2018
|
|
Hu J N. Dynamic Properties of Random Epidemic Model with Nonlinear Incidence Under the Transformation Mechanism[D]. Urumqi: Xinjiang university, 2018
|
19 |
Has'miniskii R. Stochastic Stability of Differential Equations[M]. Alphenaan den Rijn: Sijthoff and Noordhff, 1980
|
20 |
Zhu C , Yin G . Asymptotic properties of hybrid diffusion systems. SIAM Journal on Control and Optimization, 2007, 46 (4): 1155- 1179
doi: 10.1137/060649343
|
21 |
Jiang D , Shi N , Li X . Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation. Journal of Mathematical Analysis and Applications, 2008, 340 (1): 588- 597
doi: 10.1016/j.jmaa.2007.08.014
|